Integrating Human-Provided Information Into Belief State
Representation Using Dynamic Factorization

Rohan Chitnis

Leslie Pack Kaelbling

Tomas Lozano-Pérez

MIT Computer Science and Artificial Intelligence Laboratory
{ronuchit, 1lpk, tlp}@mit.edu

Abstract—In partially observed environments, it can be
useful for a human to provide the robot with declarative
information that represents probabilistic relational constraints
on properties of objects in the world, augmenting the robot’s
sensory observations. For instance, a robot tasked with a search-
and-rescue mission may be informed by the human that two
victims are probably in the same room. An important question
arises: how should we represent the robot’s internal knowledge
so that this information is correctly processed and combined
with raw sensory information? In this paper, we provide an
efficient belief state representation that dynamically selects an
appropriate factoring, combining aspects of the belief when they
are correlated through information and separating them when
they are not. This strategy works in open domains, in which the
set of possible objects is not known in advance, and provides
significant improvements in inference time over a static fac-
toring, leading to more efficient planning for complex partially
observed tasks. We validate our approach experimentally in two
open-domain planning problems: a 2D discrete gridworld task
and a 3D continuous cooking task. A supplementary video can
be found at http://tinyurl.com/chitnis-iros-18.

I. INTRODUCTION

As robots become increasingly adept at understanding and
manipulating the world around them, it becomes important
to enable humans to interact with them to convey goals,
give advice, or ask questions. A typical setting is a partially
observed environment in which the robot has uncertainty
about its surroundings, but a human can give it information
to help it act more intelligently. This information could
represent complex relationships among properties of objects
in the world, but the robot would be expected to use it as
needed when given a task or query. This setting motivates
an important question: what is the best way to represent the
robot’s internal knowledge so that this information is cor-
rectly processed and combined with the robot’s own sensory
observations? It is important for the chosen representation to
be able to accurately and efficiently answer queries (i.e. do
inference) that require it to draw on the given information.

We consider a specific class of open-domain planning
problems in which objects exist in the world, but the agent
does not know the universe of objects. We formalize our
setting as a partially observable Markov decision process
in which the robot has two sources of (potentially noisy)
observations: its own perceptual capabilities, and assertions

Presented at the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain.

Belief B Belief B’

0.5 Information:
“NextTo(location(object1), o
04 location(object2))”,

. —

0.2
0.1 I 0.0

P([location(object1), location(object2)])

0
P(location(object1)) P(location(object2))
m [Locl, Loc2] ® [Locl, Loc3] ™ [Loc2, Loc3]

[Loc2, Loc1] m [Loc3, Locl] ® [Loc3, Loc2]

Hlocl ®mloc2 ®Lloc3

Fig. 1: A schematic illustration of a dynamically factored belief.
The initial belief B tracks distributions over possible values for
the locations of two objects. There are three locations in the world
(not shown): Locl on the left, Loc2 in the middle, and Loc3 on
the right. When the agent is given information that the objects are
next to each other, the belief is updated to produce B’. This is a
new factoring in which the two old factors are joined into a single
one, corresponding to a distribution over the joint location of both
objects. Other factors (not shown) would not be affected.

about the environment that simulate the human-provided
information and are expressed in formal language. These
observations represent constraints that hold with some prob-
ability and relate properties of objects in the world.

In order to support inference in partially observed envi-
ronments, one typically maintains a belief state: a probability
distribution over the space of world states. Unfortunately, the
full joint distribution is usually intractable to work with. A
popular alternative approach is to represent a factored belief
state, in which the world state is decomposed into a set of
features, each with a value. The factored belief is then a
mapping from every feature to a distribution over its value.

We propose a method for efficient inference using a fac-
tored belief state in the presence of potentially complicated
assertions relating multiple variables. The typical approach
to using a factored belief state involves committing to a
(possibly domain-specific) representational choice at the very
start [1], [2], [3], for which can be difficult to fold in arbitrary
relational constraints without too much loss in accuracy. On
the other hand, our work treats a factored belief state as a
fluid, dynamic data structure in which the factoring itself is
molded by the constraints, as suggested by Figure 1. We call
this a dynamically factored belief.

For the class of open-domain planning problems we
consider, we show that a dynamically factored belief state
representation provides significant improvements in infer-

ence time over a fixed factoring. We validate our approach
experimentally in two open-domain planning problems: a 2D
discrete gridworld task and a 3D continuous cooking task.

Visit http://tinyurl.com/chitnis-iros-18
for a supplementary video.

II. BACKGROUND
A. POMDPs and Belief States

We formalize agent-environment interaction in the pres-
ence of uncertainty as a partially observable Markov decision
process (POMDP) [4]. We consider a typical undiscounted
setting with: S, the state space; A, the action space; (2, the
observation space; T'(s,a,s’) = P(s' | s,a), the transition
distribution with s,s" € S,a € A; O(s',a,0) = P(o| §',a),
the observation model with ' € S,a € A,0 € Q; and
R(s,a,s’), the reward function with s,s" € S,a € A. Some
states in S are ferminal, ending the episode.

At each timestep, the agent selects an action, causing 1)
the hidden state to change according to 7', 2) the agent to
receive a reward according to R, and 3) the agent to receive
an observation according to O. The agent’s objective is to
maximize its overall expected reward, E [, R(s¢, at, S¢41)].
A solution to a POMDP is a policy that maps the history of
observations and actions to the next action to take, such that
this objective is optimized over the trajectory.

The sequence of states sg,si,... is unobserved, so the
agent must instead maintain a belief state: a probability
distribution over the space of world states. This belief is
updated on each timestep based on the received observation
and taken action. The exact belief update is B'(s’) =
+10(s',a,0) Y ,cs T(s,a,s')B(s)] , where B and B’ are
the old and new belief states, s’ € S is a state, a € A is the
taken action, o €) is the received observation, and Z is a
normalizing factor.

Representing the full belief exactly is prohibitively ex-
pensive for even moderately-sized POMDPs, so a typical
alternative approach is to use a factored representation [2].
Here, we assume that the state can be decomposed into a set
of features, each of which has a value. The factored belief is
then a mapping from every feature to a distribution over its
value. Typically, one chooses the features carefully so that
observations can be folded, i.e. incorporated, into the belief
efficiently and without too much loss of information. In other
words, the chosen distributions are conjugate to the most
frequent kinds of observations. Most factored representations
are updated eagerly (without explicitly remembering the
actions and observations) but approximately. On the other
hand, a fully lazy representation just appends a and o to a
list at each timestep. Though belief updates are trivial with
this lazy representation, inference can be very expensive. In
our work, we will give a representation that is sometimes
eager and sometimes lazy, based on how expensive it would
be to perform an eager update.

Some popular approaches for generating policies in
POMDPs are online planning [5], [6], [7] and finding a policy
offline with a point-based solver [8], [9]. Our work will

use the more efficient but more approximate determinize-
and-replan approach, which optimistically plans in a deter-
minized version of the environment, brought about by (for
instance) assuming that the maximum likelihood observation
is always obtained [10], [11]. The agent executes this plan
and replans any time it receives an observation contradicting
the optimistic assumptions made.

B. Factor Graphs

We will be viewing our approach from the perspective
of factor graphs, which we briefly describe in this section.
We refer the reader to work by Kschischang et al. [12]
for a more thorough treatment. A factor graph is a bi-
partite undirected probabilistic graphical model containing
two types of nodes: variables and factors. Factor graphs
provide a compact representation for the factorization of
a function. Suppose a function f on n variables can be
decomposed as f(X1, Xo,...,X,) = [[i~, fi(C;), where
each C; C {X1,Xo,...,X,} is a subset of the variables.
This decomposition corresponds to a factor graph in which
the variables are the X, the factors are the f;, and there is
an edge between any f; and X; for which X; € Cj, i.e. f;
is a function of Xj.

This representation affords efficient marginal inference,
which is the process of computing the marginal distribution
of a variable, possibly conditioned on the values of some
other variables. Message-passing algorithms such as the
sum-product algorithm typically compute marginals using
dynamic programming to recursively send messages between
neighboring nodes. The sum-product algorithm is also com-
monly referred to as belief propagation.

III. RELATED WORK

We focus on the setting of information-giving for open-
domain human-robot collaboration. Information-giving was
first explored algorithmically by McCarthy [13] in a seminal
1959 paper on advice-takers. Much work in open-domain
collaboration focuses on the robot understanding goals given
by the human [14], whereas we focus on understanding
information given by the human, as in work on advice-
giving [15] and commonsense reasoning [16].

A. Adaptive Belief Representations

Our work explores belief state representations that adapt
to the structure of the observations received by the robot. The
work perhaps most similar to ours is that of Lison et al. [17],
who acknowledge the importance of information fusion and
abstraction in uncertain environments. Building on Markov
Logic Networks [18], they describe a method for belief
refinement that 1) groups percepts likely to be referring to
the same object, 2) fuses information about objects based on
these percept groups, and 3) dynamically evolves the belief
over time by combining it with those in the past and future.
They focus on beliefs about each object in the environment,
whereas our work focuses on combining information about
multiple objects, based on the structure of the observations.

The notion of adaptive belief representations has also
been explored in domains outside robotics. For instance,
Sleep [19] applies this idea to an acoustic target-tracking
setting. The belief representation, which tracks potential lo-
cations of targets, can expand to store additional information
about the targets that may be important for locating them,
such as their acoustic power. The belief can also contract to
remove information that is deemed no longer necessary. It
would be difficult to update this factoring with information
linking multiple targets, whereas our method is well-suited
to incorporating such relational constraints.

B. Factored Belief Representations for POMDPs

The more general problem of finding efficient belief
representations for POMDPs is very well-studied. Boyen and
Koller [2] were the first to provide a tractable method for
belief propagation and inference in a hidden Markov model
or dynamic Bayesian network. Their basic strategy is to first
pick a computationally tractable approximate belief repre-
sentation (such as a factored one), then after a belief update,
fold the newly obtained belief into the chosen approximate
representation. This technique is a specific application of
the more general principle of assumed density filtering [20].
Although it seems that the approximation error will build
up and propagate, the authors show that actually, the error
remains bounded under reasonable assumptions. Our work
adopts a fluid notion of a factored belief representation, not
committing to one factoring.

Bonet and Geffner [1] introduce the idea of beam tracking
for belief tracking in a POMDP. Their method leverages the
fact that a problem can be decomposed into projected sub-
problems, allowing the joint distribution over state variables
to be represented as a product over factors. Then, the authors
introduce an alternative decomposition over beams, subsets
of variables that are causally relevant to each observable
variable. This work shares with ours the idea of having
the structure of the belief representation not be fixed ahead
of time. A difference, however, is that the decomposition
used in beam tracking is informed by the structure of the
underlying model, while ours is informed by the structure of
the observations and can thus efficiently incorporate arbitrary
relational constraints on the world state.

IV. FORMAL PROBLEM SETTING

In this section, we formalize our problem setting as a
POMDP, for which we will show that a dynamically factored
belief is a good representation for the agent’s belief state.

Assumptions. We will assume deterministic transitions and
a uniform observation model over all valid observations, in
order to make progress on this difficult problem.

A. Planning Problem Class

We first describe the underlying class of planning prob-
lems. We consider open domains, in which the world con-
tains a (finite or infinite) universe of objects, but the agent
does not know this universe. Planning in open domains is

significantly more complex than planning in settings where

the universe of objects is known in advance.

The class of open-domain planning problems 11 contains
tuples (7,P,O0,V, F,U,I,G):

e 7 is a known set of object fypes, such as locations or
movables. For some types, the set of objects may be
known to the agent in advance; for others, it may not.

e P is a known set of properties (such as color, size, pose,
or contents) for each type from 7. Each property has an
associated (possibly infinite) domain.

e O is a (possibly partially) unknown set of objects, each
of a type from 7. This set O can be finite or infinite.

e Vs the set of state variables resulting from applying each
property in P to every object in O of the corresponding
type. Each variable has a domain based on the property
and can be either continuous or discrete.

e F is a set of fluents or constraints, Boolean-valued
expressions given by a predicate applied to state vari-
ables and (possibly) values in their domains. Examples:
Equal(size(objl), 6); Different(color(obj2), color(obj3)).

e [{ is a set of object-parametrized operators that represent
ways the agent can affect its environment. Each has
preconditions (partial assignment of values to V that must
hold for it to be legal), effects (partial assignment of
values to V' that holds after it is performed), and a cost.

e 7 is an assignment of values to V defining the initial state.

e (is a partial assignment of values to V defining the goal.

A solution to a problem in II is a minimum-cost sequence
of parametrized operators ui, ..., u, € U (a plan) such that
starting with 7 and applying the u; sequentially satisfies

operator preconditions and causes the partial assignment G

to hold. Variables in V that are not in G may have any value.

B. POMDP Formulation

With II defined, we are ready to formulate our setting as
a POMDP. Let (T,P,0,V, F,U,Z,G) be an open-domain
planning problem from II. Define the POMDP:

e S (the state space) is the space of all possible assignments
of values to V. A state is, thus, an assignment of a value
to each variable in V. Note that 7 is a state.

e A (the action space) is U.

e () (the observation space) is the space of all (potentially
noisy) observations: we define an observation as a set
of pairs (f,p), where f € F and p € (0, 1]. Intuitively,
the interpretation is that every fluent (constraint) f in
this set holds with probability p in the current state.
We assume each observation o comes from either 1)
the robot’s own perceptual capabilities or 2) an assertion
about the environment, which simulates human-provided
information. For each fluent f in o, the corresponding
p is a measure of confidence in f holding within the
current state. It can be based on the quality of a sensor
or on the human’s certainty about the veracity of their
assertion. Because O is unknown, a fluent may contain
state variables referencing objects the agent has not
encountered before.

Observation Resulting Factors Factor Graph View

[location(B), 'Ocahonui)
location(C)]

Assertion 1:
“color(objectA) = black”

Assertion 2:
“NextTo(location(objectB),
location(objectC))”

Assertion 3:
“LeftOf(location(objectC),
location(objectD))”

[location(B),
location(C),
location(D)]

llocation(&)] @?
[color(B)] [::z:tti.::((;;] @@_.

Fig. 2: Example of dynamic factoring given four sequential noise-
less observations in a setting with one object type and two proper-
ties: color and location. Each factor maps to a distribution over
values (not shown). Initially, there are no factors. Row I: The
agent receives an assertion containing one state variable, color(A); a
singleton factor for this variable is introduced. Row 2: The assertion
contains two state variables, so a joint factor is introduced. Row 3:
The assertion contains a new state variable, location(D), so a factor
is introduced for it, then joined with the [location(B), location(C)]
factor. Row 4: The agent observes the color and location of Object
B. The joint distribution over the locations of B, C, and D is now
uniform across the first dimension, so the factor gets split into
two. This type of splitting implies that factors do not necessarily
get bigger each time a new observation arrives. In this figure, all
observations are noiseless (all p = 1) for clarity of presentation.
The factor graph is always a collection of independent subgraphs,
where each subgraph contains exactly one factor.

Robot observes Object B
(and its color) at a
particular location.

locz(mn(D

e T(s,a,s’) (the transition distribution) is 1 if s satisfies
a’s preconditions and s’ its effects; 0 otherwise.
e O(s',a,0) (the observation model) is a uniform distribu-
tion over all valid observations.
e R(s',a) (the reward function) is the negative cost of a.
e s € § is terminal, ending the episode, if G holds in s.
A solution to this POMDP is a policy that maps the history
of observations and actions to the next action to take, such
that the sum of expected rewards is maximized: observe that
this corresponds to solving II. Sources of uncertainty in this
formulation are the open domain and the noisy observations.
Next, we present the dynamically factored belief as a
good belief state representation for this POMDP. Though this
representation does not depend on the presence of assertions
or an open domain, we present it within this context because
it best motivates the approach and manifests its strengths.

V. DYNAMICALLY FACTORED BELIEF
A. Overview

In trying to find a suitable belief state representation
for the POMDP defined in the previous section, we must
be cognizant of the fact that the agent does not know
O, the complete set of objects in the world. A natural
representation to use might be a factored one over each
state variable in V), but unfortunately, if O is unknown then
so is V. Furthermore, fluents in the observations may be
complicated expressions involving multiple state variables;
we would like our representation to be able to incorporate
these observations.

We note the following. First, we do not need to know
the full set of state variables in order to maintain a (partial)
factored belief representation. Second, the choice of factors
should be dynamic and influenced by the observations,
allowing us to gracefully cope with complicated assertions.
The intuition is that a constraint linking two state variables
would not be foldable into a factored representation over
each state variable, so the representation should be modified.
Building on these ideas, we present the following definition.

Definition 1: A dynamically factored belief state repre-
sentation has two components:

e A factored representation for which each factor is a list of
one or more state variables from V. The factors partition
the set of state variables that the agent knows about
so far, either from prior knowledge or from a received
observation. Each factor maps to a joint probability
distribution over possible values for all its variables.

e A database called ComplexFluents.

The belief is initialized to have a singleton factor for each
state variable in) associated with an object in O known a
priori to exist, mapping to any distribution (e.g. a prior).

Each time an observation o € () is received, the belief is
updated as follows with every constituent fluent f: all factors
containing state variables mentioned by f are introduced (if
they are not represented yet) and joined, so long as the
resulting joint would not be too big. If it would be too
big, then the fluent is lazily placed into ComplexFluents
and considered only at query time. Furthermore, factors are
regularly split up for efficiency, implying that a belief update
could potentially compress the representation. This is shown
in Figure 2 and described in detail in the next section. Newly
introduced variables can map to any distribution, such as a
uniform one, or one calculated from some prior knowledge.

The factors partition the set of state variables that the
agent knows about so far, meaning no state variable can
ever be present in more than one factor. Enforcing this
invariant greatly simplifies inference, as can be understood
from a factor graph perspective. A dynamically factored
belief maintains a factor graph with variable nodes V' and
factor nodes F', where the V' are the state variables in V' that
the agent knows about so far, and the F' are the factors.
Each node F' connects to all the V' that are present in
the corresponding list (and thus comprise that factor’s joint
distribution). Because the factors partition the variables, this
factor graph is a collection of independent subgraphs, where
each subgraph contains exactly one node from F' connected
to one or more nodes from V. See Figure 2 for an example.
Fluents placed lazily into ComplexFluents are not part of this
factor graph. The structure of this factor graph is constantly
changing as new objects are discovered and observations are
received, but it will always be a collection of independent
subgraphs. Thus, there is no possibility of ending up with a
cyclic factor graph, which would typically necessitate either
approximate inference or expensive exact inference.

Note. All fluents, complex or not, can be represented by
a factor in some more complex factor graph. One could
imagine a different algorithm that avoids constructing the

Algorithm Dynamically Factored Belief Update

1 B <+ InitializeFactoredBeliefMap()
2 ComplexFluents « set({})
Subroutine BELIEFUPDATE(observation, action)
3 for each (f,p) in observation do
4 for each stateVar mentioned by f do
5 if /! B.Contains(stateVar) then
6 | B.Add([stateVar], defaultDist())
7 if joint would be too big then
8 | ComplexFluents. Add(f)
else

9 ‘ B.JoinFactorsAndUpdate(f, p)
10 B.UpdateWithAction(action)

// Keep representation compact.
11 for each factor in B.Factors do
12 | B.TrySplit(factor, ¢)

Algorithm 1: Dynamically factored belief update.

joint of all variables mentioned by a fluent, but instead
creates a new factor for the fluent while leaving other
factors untouched. This would likely create cycles, but cycles
could be collapsed into joint distributions over all constituent
nodes. Inference would then be done using message-passing.
In contrast, our method eagerly incorporates fluents in a way
that makes inference fast and cycles impossible. Furthermore,
our method can very quickly answer queries about a marginal
on a subset of any factor, as we will see.

B. Belief Update Algorithm

Algorithm 1 gives pseudocode for updating a dynamically
factored belief. The belief is initialized to contain a singleton
factor for each state variable in V associated with an object in
O known a priori to exist. The BELIEFUPDATE subroutine
is called at each timestep, after the agent takes an action
and receives an observation (a set of fluents, each with a
corresponding probability of holding in the world).

Line 7 decides whether joining all factors containing a
state variable mentioned by the fluent would result in a joint
that is too “big” (expensive to compute or represent). If so,
the fluent is lazily stored in the database ComplexFluents
and considered only at query time. An implementation of
this test could take the product of the factor sizes and check
whether it is above a certain threshold.

Joining Factors The call in Line 9 to JOINFACTOR-
SANDUPDATE creates a new factor containing all state
variables that are mentioned by the fluent f (if such a
factor is not already present), then maps this factor to a
joint distribution for which f holds with probability p.
To accomplish this, we build the joint then rescale the
probabilities such that p mass goes to the joint values which
are consistent with f, and the remaining 1 — p mass goes to
those which are inconsistent. This can be done using Jeffrey’s
rule [21]: rescale the probability of all values inconsistent
with f by U=2J8=") where m is the total probability of
these inconsistent values, then normalize. When p = 1, this
algorithm just filters out joint values inconsistent with f, as

Subroutine JOINFACTORSANDUPDATE(B, f,p)
joint < (join factors F' containing variables in f)
m < (total prob. of values inconsistent with f)
for each value in joint do

if value is inconsistent with f then

‘ joint.RescaleProbBy (value, Uf”}iﬁ)

m

AW N -

joint.Normalize()
7 Add joint to B and remove all F' from B.

Subroutine TRYSPLIT(B, factor, €)

8 for each state variable V in factor do

9 reconstructed < Join(B[V], B[factor \ {V}])
10 if D js(Blfactor] || reconstructed) < e then

11 ‘ Split B[factor] into B[V], B[factor \ {V}].

Algorithm 2: Subroutines used in Algorithm 1.

expected. See Algorithm 2 for pseudocode and Figure 3 for
an example. If distributions are continuous, we perform these
operations implicitly using rejection sampling at query time.

Splitting Factors The call in Line 12 to TRYSPLIT
attempts to split up factors to maintain a compact represen-
tation. In practice, we accomplish this by checking whether
each state variable in the factor can be marginalized out.
Of course, it is unlikely that such marginalization can ever
be done in a lossless manner, as this would require the
joint to be exactly decomposable into a product involving
this marginal. Instead, we perform marginalization whenever
the reconstruction error is less than a hyperparameter e.
We measure this reconstruction error as the Jensen-Shannon
divergence D ;g between the true joint and the approximate
joint reconstructed from the attempted decomposition.

Let P and () be arbitrary probability distributions.
The Jensen-Shannon divergence is a smooth, symmetric,
bounded measure of similarity between P and Q. It is
based on the Kullback-Leibler (KL) divergence, defined as
Dir(P || Q) = —>, P(i)log ggzg, where the summation
can be replaced by integration for continuous distributions.
Then letting A = (P + Q), the Jensen-Shannon diver-
gence is defined as Dyg(P || Q) = $Dgn(P || A) +
1Dk(Q || A). Assuming the natural logarithm is used, the
bound 0 < D;s(P || Q) < log2 always holds. Since D jg is
bounded, it is reasonable to use € as a fixed threshold on the
reconstruction error to decide whether to do marginalization.
Varying ¢ lets the designer trade off between compactness
of the belief and accuracy of inference. See Algorithm 2 for
pseudocode and Figure 4 for an example.

C. Inference

Dynamically factored beliefs can handle two types of
queries: 1) a marginal on any state variable, or on a set
of state variables that is a subset of some factor, and 2) a
sample from the full joint of current factors, which gives a
world state consistent with the agent’s current knowledge.

To answer queries of type 1), we observe that if a state
variable or set of state variables is a subset of some factor,

Belief B

0.8 0.75 0.9

Belief B’ (Case 1: p = 1)

0.818
07 0.8

0.6

04 05

0.4

03 0.25 03

0.2 0.182

0
P(color(objectl)) P(color(object2)) P([color(objectl), color(object2)])
M [Red, Red] ™ [Blue, Red]

WRed W Blue [Red, Blue] ® [Blue, Blue]

Belief B’ (Case 2: p = 0.9) Belief B’ (Case 3: p = 0.75)

0.8 0.736 0.7
0.7 0.6
0.6

0.614

0.5

0.5
0.4
0.4

03
03

0.2 0.164 0.2 0.136 0.167

0.083
v = . |
0 — o
P([color(object1), color(object2)]) P([color(object1), color(object2)])

® [Red, Red] m [Blue, Red]
[Red, Blue] ® [Blue, Blue]

® [Red, Red] ® [Blue, Red]
[Red, Blue] ® [Blue, Blue]

Fig. 3: Posteriors from running JOINFACTORSANDUPDATE with
fluent Same(color(objectl), color(object2)), for three values of p.

0as 042 08
04 0.7

03s 06

0.7
0.6
03 0.28 0.5
5 = 0.4

025 error=0 04
02 018 # 03

03
015 0.12

0.2
01

0.1
005

0

nP([coIor(ob]ectl), color(object2)]) P(color(object1)) P(color(object2))

m [Red, Red] m [Blue, Red]
[Red, Blue] m [Blue, Blue]

HRed mBlue

06 0.8
0.5 0.7

07
06
06
04
0.5
rror > 0.4
03 erro 0 0.4
03
0.2 0.2 03
02
01 0.2
. P
0

DP([coIor(objectl), color(object2)]) P(color(object1)) P(color(object2))

® [Red, Red] ™ [Blue, Red]
[Red, Blue] m [Blue, Blue]

HRed ®Blue

Fig. 4: Two examples of trying to split up a factor having two
variables. Top: The variables are independent; no error is incurred.
Bottom: Error is incurred based on the Jensen-Shannon divergence
between the joint and the product of the marginals (~0.01 here).

then our representation already stores a joint distribution over
values for those variables. Any query about them can be
answered using this joint, e.g. by sampling. We do not have
to worry about violating the constraints in ComplexFluents
because each of those could only ever constrain a set of state
variables that spans multiple factors.

To answer queries of type 2), we must draw from the
distribution implicitly encoded by all factors together, which
produces an assignment that maps every currently known
state variable to a value. One can treat this as a constraint
satisfaction problem [22] where the constraints are the fluents
in ComplexFluents (all other fluents have already been

Algorithm SAMPLESTATE(B, ComplexFluents)
state <— map(each state variable in B — NULL)
curlndex + 0
while curlndex < number of factors do
factor + B.Factors[curlndex]
if sampling limit reached then

for each stateVar in factor do

‘ state[stateVar] «+ NULL
curlndex <« curlndex — 1

continue
values < Bl[factor].Sample()

10 for stateVar, value in zip(factor, values) do

1 | state[stateVar] < value

12 if any f in ComplexFluents cannot hold then
| continue

13 curlndex < curlndex + 1
return state

NN T R W N -

Algorithm 3: An incremental algorithm for sampling a
world state consistent with all observations, using a dynam-
ically factored belief B. The returned state is an assignment
of currently known state variables to values.

folded eagerly into the belief), and apply standard solving
techniques. Our experiments solve it incrementally using a
backtracking approach; see Algorithm 3 for pseudocode.

VI. EXPERIMENTS

We evaluate the performance of our approach on the
cooking task, a planning problem from II. The robot is tasked
with gathering ingredients and using them to cook a meal.
There are three object types: T = {locations, vegetables,
seasonings}. The term ingredients refers to vegetables and
seasonings together. Each object type has one property. Lo-
cations have a contents property, which is one of “vegetable,”
“seasoning,” or “empty.” Ingredients have a position property,
which could be continuous- or discrete-valued. Initially, the
robot knows the set of locations but not the set of ingredients.
There is a pot at a fixed, known position.

When any vegetable is placed into the pot, it transitions to
a cooking state; 5 timesteps later, it transitions to a cooked
state. The goal is to have all ingredients in the pot and all
vegetables cooked. However, the robot is penalized heavily
for placing any seasoning into the pot too early, before all
vegetables have been cooked. To achieve the goal, the robot
must learn the positions of all ingredients, either by doing
observations or by learning about them from assertions.

The operators (actions) U are:

e OBSERVE(LOCATION): Moves and observes the ingredi-
ent(s) at a location. Cost: 5.

e PICK(POSITION): Moves and picks at a continuous- or
discrete-valued position (domain-dependent). The robot
can hold up to 10 ingredients at once. Cost: 20.

e PLACEINPOT(): Places all n held ingredients into the pot.
Vegetables in the pot are either cooking or, 5 timesteps
later, cooked. Cost: 100 + 50n, plus an additional 1000 if
a seasoning is placed in before all vegetables are cooked.

e NO-0OP(): Takes no action. Cost: 0.

. Foldable for| Foldable for Setting | System |% Solved|Bel. Upd. Time | Queries / Second
Observation (Fluent) Dynamic Factors dynamic static
(ours)? | (baseline)? Dom. 1, 4x4, 6ing |S (baseline)| 67 | 0.01 | 0.11
- _ _
(intal factors) [letcar] (ietzn] Fietsw) fetan | Dom. 1, 4x4, 6ing | D (ours) | 100 0.03 20
(et | [rete)] ety | [ierean | d
Assertion 1: NextTo(position(carrot), c < C c! N N
position(salt) e sea] \/ Dom. 1, 4x4, 10ing|S (baseline)| 50 | 0.01 | 0.068
Assertion 2: Equal(contents(L2), [tecn] [Te2), w3 | [Tean | \/ Dom. 1, 4x4, 10ing\ D (ours) \ 100 \ 0.04 \ 16.7
contentsi3)) Dom. 1, 55, 6ing |S (baseline)| 13 | 001 | 0039
Assertion 3: NextTo(position(carrot), ‘ [e(L1)] ‘ ‘ [c(L2), c(13)) | ‘ [c(La)] | . .
position(potato)) | |EETEEMEETIECEEN \/ Dom. 1, 5x5, 6ing | D (ours) | 100 | 0.06 | 2.27
Assertion 4: NotEqual(contents(t3), | |11] [[c(L2), c(13), c(ta) | \/ Dom. 1, 5x5, 10ing|S (baseline) | 5 | 0.01 | 0.031
contents(L4)) [p(carrot), p(salt), p(potato)] Dom. 1, 5x5, lOing‘ D (ours) ‘ 99 ‘ 0.08 ‘ 23
Assertion 5: AtMost2SeasoningsExist() (el [c(L2), cl3), c(Lan Dom. 1, 6x6, 6ing ‘S (baseline)‘ 5 ‘ 0.01 ‘ 0.019
[p(carrot), p(salt), p(potato)]
Dom. 1, 6x6, 6i D 100 0.13 1.15
Observation by robot: [ten] [Tew2n] [Tew3), can | \/ \/ om X0, OIng ‘ (ours) ‘ \ \
At(position(carrot), L2) ‘ [p(carrot)] ‘ﬁp(salt), p(potato)]] Dom. 1, 6x6, 10ing ‘ S (baseline)‘ 5 ‘ 0.01 ‘ 0.028
Assertion 6: NotEqual(contents(1), | [1c(t)] | [[e(2) | [felt3), c(tayt | V4 v Dom. 1, 6x6, 10ing| D (ours) | 97 | 0.23 \ 0.338
“vegetable”) [[Ip(carrot)] | [Tplsalt), p(potato)] |
Dom. 2, 8ing |S (baseline)| 55 | 0.07 | 0.495
Flg: 5: .An 111ustraF10n of the types of assertions we use, with Dom. 2, 8ing | D (ours) | 100 | o1l ‘ 5.56
a simplified execution of the gridworld cooking task. There are FEp——— p— " 007 0257
four locations: L1, L2, L3, L4. Factors are color-coded based on om. 2, 10ing | (baseline) | ‘ : ‘ .
the number of state variables. c(-) means contents(-), p(-) means Dom. 2, 10ing | D (ours) | 100 | 0.14 | 4.76

position(-). Initially, there is a singleton factor for each location’s
contents. The last two columns tell whether the fluent is foldable
into a dynamic factoring (our approach), and into a static factor-
ing that tracks the potential contents of each location (baseline).
Unfoldable fluents get placed into ComplexFluents, slowing down
inference. Observe that singleton factors go in and out of joints.

There is also a living cost of 10 per timestep.

The state variables }V comprise each location’s contents
and each ingredient’s position. The world state contains an
assignment of these variables to values. It also tracks which
ingredients are held by the robot and the pot, and the current
robot pose; these are all assumed to be known and thus do
not need to be tracked by the belief state.

Assertions. Figure 5 shows the types of assertions we
use. At each timestep, we sample an assertion uniformly at
random from all valid ones, following our observation model,
and give it to the robot. The information could be redundant.

Baseline. We test against a baseline belief representation
that simulates prior work on factored representations, which
typically commit to a representational choice at the start.
This baseline, which we call a statically factored belief or
static factoring, represents the agent’s belief as a distribution
over the potential contents of each location. The factoring
does not change based on observations, or as ingredients
are discovered. We choose this factoring as our baseline
because initially, the robot only knows the set of locations,
not the set of ingredients. Thus, this factoring is the most
reasonable choice for a static representation that is chosen
at the start and held fixed throughout execution. Any fluent
that cannot fold into this static factoring is lazily placed into
ComplexFluents and considered only at query time.

Domain 1: Discrete 2D Gridworld Cooking Task Our
first experimental domain is the cooking task in a 2D
gridworld. Locations are organized in a 2D grid, and the
robot is in exactly one at any time. Both OBSERVE and
PICK actions are performed on single grid locations. Each
location is initialized to contain either a single ingredient
or nothing, so the position property of each ingredient is a

TABLE I: Some of our experimental results. Each row reports
averages over 100 independent episodes. Percentage of tasks solved
within 60-second timeout, belief update time (seconds), and average
number of queries answered per second (across solved tasks) are
shown. S: Statically factored belief (baseline), D: Dynamically
factored belief (our method). Setting column gives domain (“Dom.
17 is gridworld, “Dom. 2” is continuous), grid size (if applicable),
and number of ingredients. Our approach solves more tasks than a
static factoring does, and inference is an order of magnitude faster.

discrete value corresponding to a location. We solve the task
using the determinize-and-replan approach to belief space
planning, with A* as the planner. The task is computationally
challenging, so we impose a 60-second timeout per episode.

Domain 2: Continuous 3D Cooking Task Our second
experimental domain is the cooking task in a pybullet sim-
ulation [23]. Here, the position property of each ingredient
is a continuous value: each can be placed anywhere on the
surface of one of four tables. The robot can OBSERVE any
table and PICK at any position along a table surface, so the
action space is continuous. Locations are given by a grid
discretization of the environment geometry. As ingredients
get discovered, a dynamically factored belief adapts to track
continuous distributions over their positions. Again, we use
the determinize-and-replan method and a 60-second timeout.

Results and Discussion Table I and Figure 6 show results
when all p are 1 and € is O (see Algorithm 2), while Figure 7
shows results with noisy observations where p and € vary.
Overall, our approach solves significantly more tasks than
a static factoring does, and also does inference an order of
magnitude faster. However, our method could perform badly
when belief updates are very expensive, which could happen
if we try to eagerly incorporate fluents that link several state
variables with large domains. Typically in practice, though,
such fluents would be placed into ComplexFluents. As p
decreases, observations get noisier, so execution costs and
factor sizes increase. As e increases, more marginalization
occurs and inference accuracy is lower, so factors are smaller
but execution is costlier.

10-ingredient Gridworld: Running Time CDF

1.0

% solved within running time

—— Grid size 4x4
~—— Grid size 5x5
—— Grid size 6x6

0 10 20 30 40 50 60
Running time (sec)

Fig. 6: Left: Cumulative distribution functions showing the percent-
age of the 100 episodes we ran with our method that got solved
within different running times, for the 10-ingredient gridworld.
Although our timeout was set to 60 seconds, most tasks were solved
within 10 seconds, whereas the baseline (not shown) timed out
frequently (see Table I). Right: A visualization of the continuous
3D cooking domain. The robot is a light-blue-and-orange arm.
Vegetables (red) and seasonings (blue) are placed across four tables.

Plan Execution Cost vs. p Plan Execution Cost vs. Marginalization Error Threshold

2400
2200

2000

— error_threshold = 0
error_threshold = 0.1
— error_threshold = 0.2

2400

22001 — error_threshold = log 2
2000

1800

16001 — p=0s5
1400
1200

1000

1800

Avg cost
Avg cost
Y
1
°

1600

1400

1200

1000

00 01 02 03 04 05 06 07
Error threshold

p=1 p=09 p=075 p=05

Factor Size vs. p Factor Size vs. Marginalization Error Threshold

—p=1

p=09
— p=075
— p=o05

— error_threshold = 0
error_threshold = 0.1
— error_threshold = 0.2

— error_threshold = log 2

Avg factor size
Avg factor size

0.0 01 02 03 04 05 06 07
Error threshold

p=1 p=09 p=075 p=05

Fig. 7: Results for varying p and € (see Algorithm 2) in our
experiments. As p decreases, observations get noisier, so execution
costs and factor sizes increase. As € increases, more marginalization
occurs (with reconstruction error) and inference accuracy decreases,
so factors are smaller but execution is costlier.

VII. CONCLUSION AND FUTURE WORK

We have considered the problem of belief state representa-
tion in an open-domain planning problem where a human can
give relational information to the robot. We showed that a
dynamically factored belief is a good representational choice
for efficient inference and planning in this setting.

One future direction to explore is to approximately fold
information into the belief representation rather than compute
a joint on every update. We should seek a mechanism that
allows the designer to trade off between compactness of
the belief and accuracy of inference. Another direction to
explore is a non-uniform observation model: a robot given
information I can learn something not only from I but also
from the fact that it was told I as opposed to anything else.

ACKNOWLEDGMENTS

We gratefully acknowledge support from NSF grants
1420316, 1523767, and 1723381; from AFOSR grant

FA9550-17-1-0165; from Honda Research; and from Draper
Laboratory. Rohan is supported by an NSF Graduate Re-
search Fellowship. Any opinions, findings, and conclusions
expressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

REFERENCES

[1] B. Bonet and H. Geffner, “Belief tracking for planning with sensing:
Width, complexity and approximations,” Journal of Artificial Intelli-
gence Research, 2014.

[2] X. Boyen and D. Koller, “Tractable inference for complex stochastic
processes,” in Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, 1998.

[3] B. Sallans, “Learning factored representations for partially observable
Markov decision processes,” in Advances in neural information pro-
cessing systems, 2000, pp. 1050-1056.

[4] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, ‘“Planning and

acting in partially observable stochastic domains,” Artificial intelli-

gence, vol. 101, pp. 99-134, 1998.

D. Silver and J. Veness, “Monte-carlo planning in large POMDPs,” in

Advances in neural information processing systems, 2010, pp. 2164—

2172.

[6] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” in Advances in neural information
processing systems, 2013, pp. 1772-1780.

[7] B. Bonet and H. Geffner, “Planning with incomplete information
as heuristic search in belief space,” in Proceedings of the Fifth
International Conference on Artificial Intelligence Planning Systems,
2000, pp. 52-61.

[8] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-

based POMDP planning by approximating optimally reachable belief

spaces.” in Robotics: Science and systems, vol. 2008. Zurich,

Switzerland., 2008.

J. Pineau, G. Gordon, S. Thrun et al., “Point-based value iteration: An

anytime algorithm for POMDPs,” in IJCAI, vol. 3, 2003, pp. 1025—

1032.

[10] R. Platt Jr., R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief
space planning assuming maximum likelihood observations,” 2010.

[11] D. Hadfield-Menell, E. Groshev, R. Chitnis, and P. Abbeel, “Modular
task and motion planning in belief space,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, 2015,
pp. 4991-4998.

[12] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on information theory,
vol. 47, no. 2, pp. 498-519, 2001.

[13] J. McCarthy, Programs with common sense.
tation Center, 1959.

[14] K. Talamadupula, J. Benton, S. Kambhampati, P. Schermerhorn, and
M. Scheutz, “Planning for human-robot teaming in open worlds,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 1,
no. 2, p. 14, 2010.

[15] P. Odom, T. Khot, and S. Natarajan, “Learning probabilistic logic
models with human advice,” in 2015 AAAI Spring Symposium Series,
2015.

[16] S. Zhang and P. Stone, “CORPP: Commonsense reasoning and prob-
abilistic planning, as applied to dialog with a mobile robot.” in AAAI,
2015, pp. 1394-1400.

[17] P. Lison, C. Ehrler, and G. J. M. Kruijff, “Belief modelling for
situation awareness in human-robot interaction,” in 19th International
Symposium in Robot and Human Interactive Communication, 2010.

[18] M. Richardson and P. Domingos, “Markov logic networks,” Machine
learning, vol. 62, no. 1, pp. 107-136, 2006.

[19] S.R. Sleep, “An adaptive belief representation for target tracking using
disparate sensors in wireless sensor networks,” in Proceedings of the
16th International Conference on Information Fusion, 2013.

[20] P.S. Maybeck, Stochastic models, estimation, and control. Academic
press, 1982, vol. 3.

[21] R. C. Jeffrey, The logic of decision.
1965.

[22] R. Dechter and D. Cohen, Constraint processing. Morgan Kaufmann,
2003.

[23] E. Coumans, Y. Bai, and J. Hsu, “Pybullet physics engine,” 2018.
[Online]. Available: http://pybullet.org/

[5

[ty

[9

—

RLE and MIT Compu-

University of Chicago Press,

