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I. INTRODUCTION

Modern household and industrial robots have demon-
strated proficiency in executing repetitive physical tasks
when acting alone or with other robots. Work in human-
robot collaboration typically assumes a consistent human
presence [1], [2], [3], [4], and often frames the problem as a
human-led enterprise. However, in real-world settings such
as households and factories, a human manager might only
occasionally be available to assist a robot with its task.

We term such settings variably assistive: an autonomous
robot intermittently receives assistance from another agent
(e.g., a human) on a task it is performing. These envi-
ronments are by design partially observable, in the sense
that the robot must estimate aspects of the assistive agent’s
availability, in order to plan around the times that they will
be there to help with the task. For instance, a factory robot
transporting boxes of varying weights should reason about
when assistance is expected to be available, and accordingly
form plans that will move heavy boxes only while assisted.

Acting optimally in variably assistive settings requires the
robot to learn characteristics of the assistive agent from
experience, such as their schedule and their general eagerness
to help. Furthermore, the robot must balance expectations
with the risk of investing time into multi-step subtasks
predicated on hypothesized projections of the availability.

In this work, we motivate a framework for describing
variably assistive settings using the notion of exogenous
processes, which have typically been studied in the context
of rule-based planning [5], [6], [7], [8]. We experiment with
a simulated discrete planning scenario in which a robot
must transport boxes, and the presence of the assistive agent
endows it with additional carrying capacity. Our results show
that explicitly estimating future availability of the assistive
agent yields better task performance than do a set of baseline
heuristics making various assumptions about the availability.

II. MODELING VARIABLE ASSISTANCE PROBLEMS

The central idea in variably assistive settings is that the
availability of the assistive agent is outside the robot’s
control, but needs to be estimated. From the robot’s perspec-
tive, then, this availability can be viewed as an exogenous
process, unaffected by the robot’s own actions. Formally, an
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exogenous process {xt} is one whose dynamics satisfy

P (xt+1 | xt, at; θ) = P (xt+1 | xt; θ),

where at is the robot’s action at time t, and the θ are any
parameters of the dynamics model.

To model intermittent assistance, we propose to introduce
an exogenous process that defines a latent “countdown” until
the next toggle in availability. The countdown itself is a
stochastic process driven by latent parameters θ that can
encode characteristics of the assistive agent.

Let st ∈ Rd describe the state of the environment and
robot, which includes, for instance, object poses and the
robot configuration. For clarity, we present our model under
the assumption that st is fully observed, though generalizing
it to partially observed st is straightforward.

We define the variable assistance problem as a partially
observable Markov decision process with state space S,
action space A, observation space Ω, and reward function
R. A state in S = Rd+m × (N \ {0}) and an observation in
Ω = {0, 1} × N can be written as:[

st ct θ
]
∈ S,

[
Ht et

]
∈ Ω.

Here, st is observed (we omit it from Ω for clarity), and:
• Ht ∈ {0, 1} is an observed indicator for whether the

assistance is currently available.
• ct ∈ N \ {0} represents a latent countdown until the next

toggle in Ht will occur, which will also reset ct.
• θ ∈ Rm are a static set of latent parameters governing

the dynamics of what value ct resets to.
• et ∈ N is the observed time since the last toggle in Ht.

We make the assumption that the {ct} are an exogenous
process, and so we can factor the model by making certain
conditional independence assumptions, shown in Figure 1.

Since ct and θ are unobserved by the robot, it must
maintain a belief state, a probability distribution over their
values conditioned on the history of observations:

Bt = P (ct, θ | H0, e0, ...,Ht, et).

The latent counter ct serves to make the process Markov:
it would be unrealistic to assume that the availability in-
dicator Ht depends only on its predecessor Ht−1, but
when conditioned on ct, the Markov assumption P (Ht |
H0, H1, ...,Ht−1, ct) = P (Ht | Ht−1, ct) is sensible.

We define the models needed for belief state estimation:

P (ct+1 | ct, θ) =

{
1[ct − ct+1 = 1] ct > 1

fθ(ct+1) ct = 1



Fig. 1: Our model of the variable assistance problem setting. We
view the presence of the assistive agent as an exogenous process
from the robot’s perspective, in the sense that the robot’s actions
do not affect this process. In order to plan, the robot must estimate
the latent state of the process, since it affects the state transitions.
In this diagram, shaded nodes represent observed variables.

P (Ht+1 | Ht, ct) =

{
1[Ht+1 = Ht] ct > 1

1[Ht+1 = 1−Ht] ct = 1

P (et+1 | et, Ht, Ht+1) =

{
1[et+1 − et = 1] Ht = Ht+1

1[et+1 = 0] Ht 6= Ht+1

Here, fθ is a distribution over N \ {0} parameterized by θ,
representing possible new values of the counter each time
it is reset (which also triggers a toggle in the availability
Ht). Doing belief state estimation with these models leads to
learning about characteristics of the assistive agent, described
in the marginal distribution over θ implied by the belief.

The optimal solution to a variable assistance problem is a
policy, a mapping from beliefs to actions, that maximizes the
expected reward over the trajectory: E[

∑
tR(st, at, st+1)].

The dependence of st+1 on Ht will be task-specific: it
captures how the robot is affected by the exogenous process.

One could imagine a simple extension of this model
that allows fθ to depend on the states of other exogenous
processes. For instance, a human may be more generally
available to assist their household robot on weekends rather
than weekdays, and so fθ could depend on the current day
of the week. For clarity, we have described only the simplest
version of the model here, with one exogenous process.

III. PRELIMINARY RESULTS

We experiment with a simulated discrete planning scenario
in which a robot must transport boxes, and the presence
of the assistive agent endows it with additional carrying
capacity. We consider two settings of fθ: a deterministic one
in which ct+1 = θ, and the prior on θ is uniform; and a
stochastic one in which ct+1 ∼ Poisson(θ), and the prior on
θ is a gamma distribution. We perform state estimation using
a variant of particle filtering that resamples particles from
an analytically maintained posterior on θ (leveraging the
conjugate priors) whenever the filter collapses, for robustness
to situations where the true state is underrepresented within
the particle set. We plan in belief space using the maximum
likelihood observation assumption [9], and replan whenever
the optimistic assumptions are violated during execution.

As baselines, we consider three heuristic methods that plan
according to various assumptions about the dynamics of Ht,

System Avg. Cost: Deterministic Avg. Cost: Stochastic

Oracle 26.2 26.1

Reactive 38.1 36.94

Greedy 38.5 38.12

Delay 44.2 39.55

ADAPTEX 27.6 33.31

TABLE I: Average execution costs on box transport task, over 20
maps and 5 random seeds per map. “Oracle” is an oracle robot that
can observe ct and θ. ADAPTEX is our estimation and planning
system that reasons about and adapts to exogenous processes.

instead of estimating ct or θ. “Reactive” assumes that the
currently observed Ht will hold forever; “Greedy” greedily
tackles the most difficult subtask possible under the currently
observed Ht; “Delay” tackles subtasks in increasing order of
difficulty, disregarding the current availability.

Table I shows execution costs averaged across 100 random
initial object configurations. We can see that reasoning about
the exogenous process to estimate future availability of the
assistive agent yields better task performance than do the
baseline approaches, especially for deterministic settings.

IV. NEXT STEPS

We aim to expand the ideas presented here toward a
general framework for reasoning about partially observed
exogenous processes in planning. If the robot can identify
regularities in the dependency structure among these pro-
cesses, it could leverage these patterns to factor its belief,
making inference more tractable. In addition, the robot could
learn low-dimensional embeddings of the exogenous process
states that capture only the aspects relevant to the problem it
is currently facing, thus speeding up planning considerably.
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