
Learning Skill Hierarchies from Predicate Descriptions and Self-Supervision

Tom Silver*, Rohan Chitnis*, Anurag Ajay, Josh Tenenbaum, Leslie Pack Kaelbling
Massachusetts Institute of Technology

{tslvr, ronuchit, aajay, jbt, lpk}@mit.edu

Abstract

We consider the problem of learning skills — lifted, goal-
conditioned policies and associated STRIPS operators — for
deterministic domains where states are represented as sets of
fluents. The agent is equipped with a STRIPS planner and
a set of primitive actions, but is not given models of these
actions to use for planning. Its objective is to learn a set of
policies and operators with which it can efficiently solve a
variety of tasks presented only at test time. Previous works
have examined the problems of learning operators and learn-
ing hierarchical, compositional policies in isolation; our fo-
cus here is to have one agent learn both. We approach this
problem in two phases. First, we use inductive logic program-
ming to learn primitive operators — preconditions and effects
for each primitive action — from interactions with the world.
Next, we use self-supervision to learn both higher-level lifted
policies built on these primitives and their associated opera-
tors. We demonstrate the utility of our approach in two do-
mains: Rearrangement and Minecraft. We evaluate the extent
to which our learned policies generalize and compose to solve
new, harder tasks at test time. Our work illustrates that a rich,
structured library of skills can be derived from limited inter-
actions with a predicate-based environment.

Introduction
An intelligent agent must have skills that generalize and

compose. The former property demands that the agent’s
skills are useful in a variety of settings, which may be signif-
icantly different from the settings in which these skills were
acquired. The latter allows the skills to be sequenced to solve
novel, complex tasks, resulting in a beneficial combinatorial
explosion of planning problems that can be solved.

For instance, consider a skill for a household robot that
moves an object from one room in the house to another. Ide-
ally, this skill should generalize across objects: regardless of
whether it is a laptop, spoon, or book, the agent must move
to it, grasp it, transport it to the target room, and place it. Fur-
thermore, this skill should seamlessly compose with other
skills, such as cleaning the object or using it as a tool.

In this work, we address the problem of learning a rich
library of generalizable and composable skills from a limited

* Equal contribution.

Figure 1: We learn lifted, goal-conditioned policies and
associated STRIPS operators for predicate-based domains.
The policies we learn can generalize to both new goals and
new initial states containing novel object types and arbitrary
numbers of objects. Pictured is our Minecraft domain, where
after examples of performing a handful of tasks such as
fetching planks, our agent can accomplish new goals (fetch
two dirts in sequence) and generalize to new initial states,
which may include new object types such as pumpkins or
more trees (see top-right image).

number of interactions with the environment. We formalize
a skill as 1) a policy and 2) an associated STRIPS operator
description, which captures the preconditions of this policy
and the effects of executing it in the world.

To facilitate generalization, we seek to learn poli-
cies that are lifted and goal-conditioned. The poli-
cies are lifted in the sense that they are parameter-
ized, e.g. Transport(robot-location, object,
target-room), which should work over a variety of
objects and rooms that could be passed in as arguments.
The policies are goal-conditioned in that they are param-
eterized by not only variables describing the current state
(robot-location), but also variables describing the pol-
icy’s goal (object and target-room). The STRIPS op-
erators associated with each policy are compositional by de-
sign; classical planners (Hoffmann 2001; Helmert 2006) can

efficiently sequence them to solve long-horizon tasks.
We assume a deterministic domain where states are rep-

resented as sets of fluents and the agent is given a set of
primitive parameterized actions such as Move, Pick, and
Place. We then proceed in two phases. First, we use in-
ductive logic programming (Blockeel and De Raedt 1998;
Lavrac and Dzeroski 1994; Muggleton 1991) to learn prim-
itive operators — preconditions and effects for the primi-
tive actions — from interactions with the world. Next, we
employ a STRIPS planner over the primitive operators to
simulate new environment interactions (within the agent’s
“mind”), from which we synthesize skills: higher-level lifted
policies built on the primitives and their associated opera-
tors. The operators are synthesized using backward chain-
ing (goal regression) (Kaelbling and Lozano-Pérez 2010;
Pollock 1998; Alcázar et al. 2013). This skill synthesis step
is run repeatedly to build increasingly robust policies and
correct associated operators. With these operators, a planner
can chain together the policies to solve more complex future
tasks.

We demonstrate the utility of our approach in two dis-
crete, deterministic domains: Rearrangement and Minecraft.
Our experiments are designed to show both generalizability
and compositionality of our learned policies and operators.
To show generalizability, we evaluate policies when 1) start-
ing in initial states vastly different from those seen during
training and 2) they are given arguments not seen during
training. To show compositionality, we evaluate whether a
STRIPS planner can use our learned operators to find plans
for goals more complex than those seen during training.

Background

STRIPS Planning

A STRIPS (Fikes and Nilsson 1971) planning domain is a
tuple 〈P,O〉, where P is a set of predicates (Boolean-valued
functions) and O is a set of operators consisting of: a set of
discrete parameters, a set of preconditions specifying when
that operator can be executed, and a set of effects that hold
after the operator is executed.

A STRIPS planning problem instance is a tuple 〈I,G〉,
where I is an initial state that contains 1) a set of objects
X in the domain and 2) a set of fluents that hold initially. A
fluent is the application of a predicate to objects in X . The
goal G is described as a conjunction of fluents.

We will often use the phrase “planning problem” to re-
fer to a STRIPS domain and problem together. The solution
to a planning problem is an open-loop plan — a sequence
of operators a1, ..., an ∈ A with corresponding arguments
chosen from X — such that starting from the fluents in I
and applying the operators’ effects in sequence, each state
satisfies the preconditions of the subsequent operator and G
is a subset of the final state. STRIPS planning problems are
deterministic, fully observable, and discrete. The challenge
in solving them comes from the combinatorial nature of the
search for a plan that drives the initial state to the goal.

Inductive Logic Programming
Inductive logic programming (ILP) (Lavrac and Dzeroski

1994; Muggleton 1991) is a class of techniques for learn-
ing a Prolog hypothesis h to explain examples E . Learning
from interpretations (De Raedt 1996; Blockeel and De Raedt
1998) is an ILP setting in which each example is a pair of 1)
a conjunction of “input” fluents Z and 2) a conjunction of
“target” fluents Y .1 We assume that the input-output map-
ping is a deterministic function, and therefore consider all
(Z, Y ′) with Y ′ 6= Y to be negative examples. A hypothesis
h is thus valid if for all (Z, Y) ∈ E , Z ∧ h =⇒ Y and for
all Y ′ 6= Y , Z ∧ h 6=⇒ Y ′.

Related Work
Learning STRIPS operators. Significant attention has
been given recently to learning STRIPS action models from
interaction data. For instance, Mourao et al. (2012) develop
a method that is robust to noise in the interaction data by first
learning noiseless implicit action models, then synthesizing
STRIPS models from these. In contrast, we focus on lever-
aging induction to obtain significant generalizability, allow-
ing our learned policies to solve problem instances very dif-
ferent from those seen in the interaction data used for train-
ing. To make our methods robust to noise, one can turn to
probabilistic ILP systems (De Raedt and Kersting 2008).

Fikes, Hart, and Nilsson (1972) propose an approach for
generalizing plans found by a STRIPS planner, via replac-
ing certain ground terms in the plan steps with problem-
independent variables, to create so-called macrops. Minton
(1985) extends this work to address the problem of over-
whelming macrop proliferation, selectively choosing only
certain plans to generalize using a heuristic. Like macrop
learning, our method achieves a similar effect in learning
lifted policies, but we do not assume that the agent starts off
with any operators. Wang (1996) learns STRIPS operators
from solution traces of an expert performing a task, while
Wang et al. (2018) learn geometric constraints on the param-
eters of operators, representing part of the required precon-
ditions. Unlike these approaches, we learn complete STRIPS
action models from the agent’s own interaction data.

Generalizable options for reinforcement learning. Op-
tions provide a formalism for specifying temporally ex-
tended actions within the reinforcement learning framework.
They consistent of a policy, an initiation set, and a termina-
tion condition, similar to the policies and operator precondi-
tions that we learn. Particularly relevant are works where
a set of options is learned so that the agent can accom-
plish a variety of new tasks at test time (Oh et al. 2017;
Tessler et al. 2017; Jinnai et al. 2019). An option model
specifies the outcome of executing an option from an ini-
tial state, similar to the effects that we learn. Options and

1This description differs from that given by Blockeel and
De Raedt (1998) in two ways: 1) a background theory B, when
available, can be included in each Z (so that Z′ = Z ∪ B), so
we do not separately define B; 2) our targets are conjunctions of
fluents with arguments; this generalizes previous work in which
targets are single zero-arity symbols.

their models are not typically lifted like the representations
we study in this work. Much work has addressed the prob-
lem of learning these options (Konidaris and Barto 2009;
Stolle and Precup 2002), though fewer consider learning the
option models (Sutton, Precup, and Singh 1999).

Thrun and Schwartz (1995) develop a method for identi-
fying and extracting skills, partial policies defined only over
a subset of the state space, that can be used across multi-
ple tasks. Their method selects skills that minimize both the
loss in performance due to using this skill rather than the
low-level actions, and the complexity of the skill descrip-
tion. Konidaris and Barto (2007) suggest to learn options in
agent-space rather than problem-space so that they can more
naturally be transferred across problem instances. A separate
line of work leverages motor primitives for learning higher-
level motor skills (Peters and Schaal 2008); our method can
similarly be seen as a way of learning higher-level control
policies on top of a given set of primitive operators.

Reinforcement learning typically requires a high number
of interactions with the environment in order to learn useful
policies, and so we do not pursue this family of approaches.
The idea of learning generalizable and reusable options is,
nevertheless, related to the high-level objective of this work.

Skill learning via goal-setting and self-play. The idea
of training agents to acquire skills via self-play dates back
decades, and is especially prevalent as a data collection
strategy when training AI for game-playing (Tesauro 1995;
Silver et al. 2016). Within single-agent settings, self-play
can be described as setting goals for oneself and attempt-
ing to reach them, while learning something through this
process. Such approaches have led to impressive recent suc-
cesses in control tasks (Held et al. 2018; Florensa et al.
2017) and planning problems such as Sokoban (Groshev et
al. 2018). While these approaches allow agents to acquire
diverse skills, they typically do not involve a model-learning
component as ours does, which is useful because it lets us
take advantage of compositionality.

Problem Formulation
We are given a deterministic environment with fully ob-

served states S ∈ S and primitive actions a ∈ A. States
are conjunctions of fluents over a set of predicates P , and
primitive actions are literals over a different set of predicates
Q. The agent acts in the environment episodically: for each
episode, an initial state S0 and set of objects X are sampled
from a distribution P (I) over possible I = (S0,X), and
for each action a ∈ A taken by the agent, the environment
transitions to a new state following S′ = T (S, a). All state
fluents and action literals are grounded with objects from X .
The transition function T is unknown to the agent.

The agent’s first task is to learn operators for the primitive
action predicatesQ. As described in “Background”, an oper-
ator consists of a set of discrete parameters, a set of precon-
ditions, and a set of effects. The operator can be grounded
by passing in arguments (objects from X) for the parame-
ters. We use O0 to denote the set of primitive operators.

The agent’s next mandate is to learn skills — higher-level
policies building on the primitives, and associated operators

— that allow it to efficiently solve a large suite of planning
problems at test time. Like operators, policies are parame-
terized, and can be made ground by passing in objects from
X , which may encode the desired goal of the policy or in-
formation about the state. A policy π is thus a mapping from
states S and a constant k number of objects X k to primi-
tive actions A. Note that since X is a property of a problem
instance, not the domain, these policies can naturally gener-
alize to new object instances or types.

We use 〈Π1,O1〉 to denote a learned set of policies and
operators, and 〈Π,O〉 = 〈Q ∪ Π1,O0 ∪ O1〉 to denote the
(unground) primitives and learned policies, together with all
learned operators for both primitives and policies.

The agent is equipped with a resource-limited STRIPS
planner. Given a planning problem 〈I,G〉, the agent uses its
current set of operators O to search for a plan π1, ..., πn ∈
Π, where each step πi may be either a ground primitive
action or a ground learned policy. This plan can be ex-
ecuted step-by-step: for primitive actions, simply execute
that action in the world, and for learned policies, continu-
ously run the next primitive it suggests until the effects of
the operator are met (or a timeout is reached). We write
SUCCESS-PE(O,Π, I, G) ∈ {0, 1} to indicate whether
Planning followed by Execution succeeds (1) or fails (0).

A good collection of skills 〈Π,O〉 will allow the agent to
solve planning problems of interest. To formalize this no-
tion, we consider a distribution over goals P (G) alongside
the distribution over initial states P (I), assuming indepen-
dence P (I,G) = P (I)P (G). The full objective is then:

〈Π∗,O∗〉 = argmax
Π,O

E
〈I,G〉

[SUCCESS-PE(O,Π, I, G)] .

This objective involves optimizing over a set of policies and
operators. To make this problem more tractable, we decom-
pose it into two separate objectives, one for operator learn-
ing and another for policy learning, which in practice can be
alternated to approximately solve the full problem.

Operator Learning Objective Operators should cor-
rectly describe the preconditions and effects of their asso-
ciated policies or primitive actions. Let π ∈ Π be a policy
or primitive, and x = (x1, ..., xk) be arguments to ground it.
The objective is to learn a binary classifier Pre(π, x, S) and
a regressor Eff(π, x, S). The effects regressor predicts the
effects of running π with arguments x, starting from state
S. The precondition classifier predicts whether these effects
will hold when starting from S, and must be true as much of
the state and argument space as possible.

Formally, let δ(S, S′) be the fluents in state S′ not present
in state S (positive effects) unioned with the negation of flu-
ents in state S not present in state S′ (negative effects). Over-
loading notation, let S′ = T (S, π) be the state after policy
π is executed to completion starting from state S.

Given π, the objective is to learn Pre and Eff optimizing:

max
∑
S,x

Pre(π, x, S)

s.t. ∀ S, x : [Pre(π, x, S) = 1] =⇒
[Eff(π, x, S) = δ(S, T (S, π))] .

Policy Learning Objective Each policy should contribute
to the overall objective by expanding the set of problems that
can be solved with a resource-bounded planner. We approxi-
mate this objective by preferring policies that solve as many
problem instances as possible in a single step; that is, by ex-
ecuting the policy from the initial state, we should arrive at
the goal. Let SUCCESS-E(Π, I, G) = 1 if Executing some
policy succeeds, i.e. for some π ∈ Π, we have G ⊆ T (I, π).
Maximizing this metric alone would lead us to an arbitrar-
ily large set of policies; we must bear in mind that we ul-
timately want to use these policies to learn associated op-
erators for planning, and while adding a new policy may
increase the effective planning depth, it also inevitably in-
creases the breadth. We therefore wish to avoid adding poli-
cies that are redundant or overly specialized to specific prob-
lem instances. Thus, our objective for policy learning is:

Π∗ = argmax
Π

E
〈I,G〉

[SUCCESS-E(Π, I, G)]− β|Π|,

where β > 0 is a parameter controlling regularization. Note
that we did not need this regularizer in the full objective be-
cause a resource limit was baked into our STRIPS planner,
which was part of the SUCCESS-PE function evaluation.

Learning Policies and Operators
In this section, we describe our approach to learning lifted

policies and STRIPS operators. An overview of the approach
is provided in Figure 2.

Phase 1: Learning Primitive Operators
The first problem that we must address is learning prim-

itive operators O0 — one per primitive action predicate
in Q — from interactions with the environment. Recall
that states are conjunctions of fluents and (ground) ac-
tions are ground literals. From interacting with the envi-
ronment, we can collect a dataset of state-action trajecto-
ries (S0, a0, S1, ..., ST) ∈ D. We use a simple strategy for
data collection where the agent executes actions selected
uniformly at random. More sophisticated methods for ex-
ploration and data collection could easily be incorporated to
improve sample complexity.2 After each new transition, we
check to see whether the current operator for the taken action
fits the transition; if so, we discard the sample and continue,
and if not, we add the sample to our dataset and retrain the
operator. We now describe this training procedure.

Recall that an operator Oq for an action predicate q ∈ Q
consists of a precondition classifier Pre(q, x, S) and an ef-
fects regressor Eff(q, x, S). We suppose that by default,
primitive actions can be executed in every state, i.e., that
Pre(q, x, S) ≡ 1. However, in many domains of interest, in-
cluding those in our experiments, there are often action fail-
ures. For example, a Pick action may fail if the target object

2Interestingly, exploration strategies based on goal setting like
the ones we use for policy learning fare poorly for primitive op-
erator learning. The learned operators can be initially pessimistic
about what effects can be achieved; planning with these pessimistic
operators to gather more data, we will never find trajectories to cor-
rect the pessimism.

is not within reach. We accommodate this possibility by per-
mitting a special zero-arity Failure predicate, the presence of
which indicates that some previous action has failed. A state
with Failure can be seen as a “sink state” for the environ-
ment, from which no action can escape. In other words, ex-
ecuting the Pick action on an unreachable target will result
in a failure state, effectively ending the episode. If a Failure
predicate exists for a domain, we will consider the precondi-
tions of an action to include all those states that do not lead
to immediate Failure when the respective action is taken.
Formally, Pre(q, x, S) = 1 ⇐⇒ Failure 6∈ Eff(q, x, S).

With the preconditions defined, the remaining problem is
to learn effects. We convert the dataset of trajectories D into
separate datasets of effects for each predicate q, i.e., Eq =
{(St, δ(St, ST))} for all (..., St, at,, ST) ∈ D where the
predicate of at is q. Here, δ is the effect-retrieval function
defined in “Operator Learning Objective.” Now, if we can
learn formulas hq such that S∧hq =⇒ S′ and S∧hq 6=⇒
S′′ for all S′′ 6= S′, then we can recover the effects we seek:
S ∧ hq =⇒ Eff(q, x, S). So, learning effects reduces to
the inductive logic programming (ILP) problem of learning
from interpretations (see “Background”).

Among many possible ILP methods (Lavrac and Dze-
roski 1994; Muggleton 1991; Quinlan 1990), we found
top-down induction of first-order logical decision trees
(TILDE) (Blockeel and De Raedt 1998) to be a simple and
effective method for operator effect learning. TILDE is an
extension of standard decision tree learning (Quinlan 1986)
that allows for (unground) literals as node features. In the
original formulation, TILDE considers only propositional
classes; our implementation instead allows for lifted literal
classes, which is necessary for the effect mapping we seek
to learn. A second necessary extension is to permit multiple
output literals for a single input, since there are generally
multiple effects per action. While a different tree could in
principle be learned for each output literal, we instead learn
one tree with conjunctions of literals in the leaf nodes. Inter-
estingly, we discover that having multiple outputs in the leaf
nodes actually amounts to stronger guidance for induction
and therefore makes the learning problem easier for TILDE.

Phase 2: Learning Lifted Policies and Operators
With primitive operators in hand, we can now proceed to

learning higher-level policies and associated operators. We
proceed in two phases that we iterate repeatedly. First, we
use the primitive operators to learn lifted, goal-conditioned
policies that invoke primitive actions. Then, we learn op-
erators for those policies so that we can plan to use them
in sequences to achieve harder goals. A natural next step,
which we do not address in this work, would be to allow the
policies to invoke other policies, leading to a loop where we
learn policies from operators and operators from policies to
grow an arbitrarily deep hierarchy of skills.

Policy Learning To optimize the policy learning objective
described in “Problem Formulation,” we must find a set of
policies that is as small as possible while solving as many
planning problems in one execution as possible. Rather than
trying to optimize the size of the policy set automatically, we

Figure 2: An overview of our approach to learning lifted,
goal-conditioned policies and STRIPS operators. In the first
phase, we learn operators for the agent’s primitive actions by
acting randomly in the environment, and applying inductive
logic programming. In the second phase, we iteratively learn
higher-level policies (that invoke primitives) and associated
operator descriptions by setting novel goals for the agent to
achieve in its environment, and applying backward chaining.

opt to decompose the learning problem into individual, inde-
pendent policy learning problems, where each policy is re-
sponsible for achieving one goal predicate. Formally, a goal
predicate is any predicate in P that appears in some goal
G ∼ P (G). For example, if Holding is a predicate in P ,
we would learn a policy that takes in a state and an object
x ∈ X that the agent wants to be holding, and returns an
action in furtherance of the Holding(x) goal. In assigning
one predicate to each policy, we avoid the possibility that
two learned policies will be completely redundant. We also
attain good coverage of goals that the agent may encounter
in future planning problems, as all goals are expressed in
terms of fluents, i.e., groundings of the goal predicates.

We represent each policy as a first-order logic decision list
(FOLDL), which is a first-order logic decision tree (Blockeel
and De Raedt 1998) with linear chain structure. A FOLDL
is a list of (clause, unground action) pairs (R, q(v)) called

rules, with semantics: ∀ x .

(
i∧

j=1

Rj(x)

)
=⇒ qi(x). We

will learn FOLDL policies in such a way that the order of the
rules is in correspondence with the number of steps remain-
ing to achieve the associated goal: the first i rules will handle
the case where the agent is one step away from achieving the
goal; rules i+1 through i+1+ j will handle the case where
the agent is two steps away; and so on. Here, i and j refer
to the number of rules necessary to characterize the corre-
sponding precondition sets.

We use a simple backward chaining strategy to learn
FOLDL policies from operators. First, we describe an in-
efficient version of the method that relies on an exhaustive
backward search. Then, we describe how to guide the back-
ward search toward useful parts of the state space using data.

The key component of backchaining is an operation that
takes an action predicate q, objects x, and a state S′; and
“inverts” the action, producing the set of literals from which
applying q with x results in S′. We denote this mapping:

Inv(q, x, S′) ,
∧
{S : Pre(q, x, S)∧(Eff(q, x, S) =⇒ S′)}.

Figure 3: Example of a policy and associated operator
learned by our approach. To be Holding an object, the
robot must be at the same location as it; therefore, the
learned policy has two clauses. The first expresses that if
the robot is at some location V4 that is different from the
object’s location V2, then the robot should MoveTo V2.
The second expresses that if the robot is at V2, it should
Pick the object. (Variable uniqueness is a consequence of
our TILDE implementation.)

We can compute Inv(q, x, S′) directly from the operator
we previously learned for q, which contains explicit repre-
sentations of Pre(q, x, S) and Eff(q, x, S). In particular, for
each of the positive operator effects, we add a correspond-
ing negative literal to Inv(q, x, S′); for each negative effect,
we add a positive literal. In adding a positive or negative lit-
eral to Inv(q, x, S′), if the opposite literal already exists in
the set, we cancel them out by removing both. Precondition
literals are added without modification.

Suppose now that we are learning a policy for achiev-
ing groundings of goal predicate g ∈ P . To do so, we be-
gin by building a graph where nodes are sets of literals and
edges are actions (both unground). The root node represents
the goal predicate g applied to a set of unground variables.
To build the graph inductively, we use the Inv function de-
fined above to generate successors: for each node with lit-
erals S′, create a child node for every q ∈ Q and every
setting of unground variables v; this child node contains lit-
erals Inv(q, v, S′) and is connected to its parent by an edge
labeled with unground action q(v).

With the graph constructed, we can read out the FOLDL
representing the policy π for achieving g by traversing the
tree in level order (first the root, then all depth 1 nodes, then
all depth 2 nodes, etc.). For each node visited after the root,
we append a new rule (R, q(v)) to the FOLDL, where R
is the set of literals in the node and q(v) is the edge con-
necting the node to its parent. This procedure completes our
construction of the policy.

The construction above effectively searches for all paths
to the given goal g, including perhaps paths that in-
volve rare or “dead” states that have negligible impact
on our ultimate planning objective. Instead, to focus this
search on higher-likelihood parts of the state space, we
use our primitive operators and STRIPS planner to cre-

ate a dataset of representative state-action trajectories τ =
〈I, q0(v), S1, q1(v), ..., ST 〉, where ST =⇒ g(v). (The
specific means by which we acquire this dataset can greatly
impact learning; see “Generating Data via Goal-Setting” be-
low.) Given these trajectories, instead of computing the full
graph, we can approximate it to only contain states seen in
some trajectory. The complexity of policy learning is then
a function of the number and length of these trajectories,
rather than the size of the entire state and action space.

Operator Learning With policies learned, we must next
learn their associated operators. In particular, for each policy
π, we must derive a precondition classifier Pre(π, x, S) and
an effects regressor Eff(π, x, S).

Observe that the FOLDL representation of π allows us to
immediately read out the preconditions: any state for which
the decision list implies any action is in the preimage of the
policy. Formally, if π contains clausesR1,R2, . . .,Rk, then:

Pre(π, x, S) =

k∨
i=1

(S =⇒ Ri(x)) .

To learn effects, we take advantage of a backchaining pro-
cedure that is very similar to the one used for policy learn-
ing. As in policy learning, we will use FOLDLs to define
the mapping for effects. However, whereas policy FOLDLs
contain single literals qi at the leaves, the FOLDLs for ef-
fects will contain conjunctions of literals Ei, as executing a
policy generally results in multiple effects.

In policy learning, we constructed a graph where nodes
were sets of literals and edges were actions, both unground.
A path from a descendent to the root represented a trajectory
leading from some initial state to a state implying the goal.
For effects learning, we construct an analogous graph, using
the same function Inv and starting with the same root node
g applied to a set of unground variables. The key difference
is that edges in this graph will now be annotated with effects,
rather than actions. As a base case, consider the edges ema-
nating from the root. Let S′′ be the literals in the root. For a
child of the root with literals S′, we annotate the edge with
δ(S′, S′′), the set of literals in S′′ not in S′ (positive effects)
and vice versa (negative effects). Next, as an inductive step,
let S be a node at depth 2 or more in the tree, and let S′ be
its parent. Let E′ be the effects annotating the edge between
S′ and its parent. Then the effects labeling the edge between
S and S′ will be E′ ∪ δ(S, S′). If two effects in this union
cancel out, both are removed. As in policy learning, we can
read out a FOLDL representing the effects by traversing this
graph in level order, and add nodes along with their parent
edges as rules to the FOLDL.

Generating Data via Goal-Setting
Now, we discuss three simple strategies for generating the

data used to train the policies and associated operators. Note
that the primitive operators are trained on random interaction
data, but this will not be useful for training policies, since
the policies must capture more interesting behavior in the
world that will likely never be encountered through random
interaction. We start with describing the simplest strategy;
each subsequent one builds upon the one before.

Strategy 1: Goal Babbling. Recall that we train one pol-
icy per goal predicate in the domain; therefore, our data
generator should return pairs of (τ, p) where τ represents a
state-action trajectory of interaction data that turns on some
grounding of predicate p. The Goal Babbling (Baranes and
Oudeyer 2010) strategy samples problem instances (I,G),
runs the planner to try to solve them, and if successful, emits
the resulting state-action trajectory τ as data for turning on
the predicate associated with (ground) fluent G.

Strategy 2: Goal Babbling with Hindsight. This strategy
identifies all fluents that get turned on within τ , rather than
just the goal G, and emits data associated with each one. To
ensure that the emitted trajectories are the optimal way to
achieve each fluent, which is needed so that the policies do
not see inconsistent data of different action selections from
the same state, the planner must be re-run for each fluent.
This strategy allows the agent to glean extra information
from each trajectory, about how to achieve predicates other
than the one corresponding to the goal G it had set for itself.

Strategy 3: Exhaustive Novelty Search. This strategy ex-
hausts all achievable goals for a particular initial state be-
fore moving on to the next one. This ensures that all goals
in P (G) get encountered, but it may overfit to the particular
few initial states in P (I) that it sees.

Training Loop
Pseudocode for the full training loop is shown in Algo-

rithm 1. We begin by learning operators for the primitive
action predicates Q. Then, we initialize a data buffer asso-
ciated with each predicate p in the domain. We iteratively
train the policies on data produced by the GETDATA pro-
cedure, which can be any of the three strategies discussed
previously. This procedure returns pairs of (τ, p), represent-
ing a state-action trajectory τ and the predicate p of some
fluent which turns true on the final step of that trajectory.

Algorithm TRAIN-LOOP(P,Q,A, P (I), P (G))
1 for each primitive predicate q ∈ Q do
2 Train primitive operator Oq , add to set O0.
3 for each predicate p ∈ P do
4 Initialize Dp ← empty data buffer.
5 while policies not converged do
6 for τ, p ∈ GETDATA(A,O0, P (I), P (G)) do
7 Append τ to dataset Dp.
8 Fit policy πp to Dp.
9 for each predicate p ∈ P do

10 Learn operator description Op for πp.

Experiments
We conduct experiments in two domains: Rearrangement,

implemented in the PyBullet simulator (Coumans, Bai, and
Hsu 2018), and Minecraft, implemented on the Malmo plat-
form (Johnson et al. 2016). See Figure 4 for visualizations.
We first describe these domains, and then discuss our results.

Rearrangement Domain Description
A robot is interacting with objects of various colors lo-

cated in a 3×3 grid. Its goal is expressed as a conjunction of

Figure 4: Visualizations of our two experimental domains.
Left: Rearrangement, implemented in the PyBullet simula-
tor (Coumans, Bai, and Hsu 2018). Right: Minecraft, imple-
mented on the Malmo platform (Johnson et al. 2016).

(object, desired location) fluents, and thus the robot must re-
arrange the objects into a desired configuration. The robot’s
primitive actions are 1) to MoveTo a given grid location,
2) to Pick a given object from the current location (which
only succeeds if the robot is not holding anything, and if it
is at the same location as the object), and 3) to Place a
given object at the current location (which only succeeds if
the robot is holding that object).

We consider any predicate that can change within an
episode to be a goal predicate. The two goal predicates for
which we learn policies in this domain are Holding, pa-
rameterized by an object; and At, parameterized by a move-
able and a location, where a moveable can be either the robot
or an object. Even in this simple domain, policies can get
quite complex: for instance, making an object be At a loca-
tion requires reasoning about whether the robot is currently
holding some other object, and placing it down first if so.

We design a test set of 600 problem instances in this do-
main, varying in difficulty from holding a single object to
rearranging several objects. Many of these problems involve
objects unseen during training time, as well as varying num-
bers of objects in the grid.

Minecraft Domain Description
This domain features an agent in a discretized Minecraft

world. The agent and other objects — logs, planks, and dirt
at training time — are placed in a 5 × 5 grid. Additionally,
the agent has an inventory, which may contain arbitrarily
many objects. The agent may also equip a single object from
its inventory at a time. As in the Rearrangement domain,
MoveTo and Pick are among the primitive actions. Other
primitive actions include Equip, which allows the agent to
equip an object if the object is in the inventory and another is
not already equipped; Recall, the inverse of Equip; and
CraftPlanks, which converts an equipped log into a new
plank and puts it in the agent’s inventory.

The goal predicates for which we learn policies in
this domain are Inventory, parameterized by an object;
IsPlanks and Equipped, each parameterized by an ob-
ject; and IsEmpty, parameterized by a location. If an agent
starts with an empty inventory and with no planks in the
world, it must MoveTo a location with a log, Pick the log,

Equip the log, and execute CraftPlanks in order to sat-
isfy IsPlanks. Satisfying two IsPlanks goals would re-
quire repeating this sequence with two different logs.

We design a test set of 400 problem instances in this do-
main with varying difficulty in terms of the number of goal
fluents and the initial states. As in Rearrangement, object
types (e.g. novel ones such as pumpkins) and counts vary
with respect to what was seen during training.

Results and Discussion
We conduct three experiments in these domains that mea-

sure the improvements yielded by each of the three major
components of our approach: 1) learning primitive action
operators; 2) learning lifted, goal-conditioned policies; and
3) learning operator descriptions for the learned policies.

Figure 5 shows the results of planning with learned opera-
tors for the primitive actions. These operators are learned via
data of random interaction with the environment. We can see
that in both domains, the quality of the operators improves
over time. By inspecting the learned operators, we find that
the preconditions expand to cover more of the state space
and the effects become more accurate over time. As seen in
the empirical results, the improved operators translate into
improved test-time performance.

After learning the primitive operators, we proceed with
learning lifted, goal-conditioned policies for achieving the
various goal predicates in the domains. Figure 6 shows the
results of invoking these policies to solve problem instances
in the test set. Note that in this experiment, we have not
learned the operator descriptions of these policies, and so
we cannot yet use them in a planner; therefore, we can only
achieve single-fluent goals by running the respective policy.
The results show that in both domains, the policies we learn
outperform invoking only the primitives after only a handful
(less than 5) trajectories collected as training data.

In our final experiment, we close the loop between
STRIPS planning and policies, learning operator descrip-
tions of learned policies so that we can plan to execute mul-
tiple policies in sequence. Results of planning with these
learned policies and operators are shown in Figure 7. We find
that test suite performance is far improved beyond what was
attainable with policies or primitive operators alone. This
improved performance is an illustration of the importance
of compositional reasoning; our operators can be composed
seamlessly to achieve complex, multi-fluent goals within a
limited planning horizon of 5. Most of these goals cannot
be achieved by only primitive actions within that same hori-
zon, as shown by the green curves in Figure 5. The large
improvement achieved by planning with our learned opera-
tors is due to the combinatorial nature of search: each policy
can “reach” farther within a single timestep than a primitive
can, and so a sequence of these policies provides exponential
increases in the attainable coverage. Therefore, many more
goals can be solved, as shown by our empirical results.

Across both Figure 6 and Figure 7, we observe that the
Goal Babbling and the Goal Babbling with Hindsight strate-
gies perform equally well (with respect to the margin of er-
ror), and both slightly better than the Exhaustive one. This
matches intuition: the Exhaustive strategy learns policies

Figure 5: Test set performance versus number of interactions
with environment, for STRIPS planning with learned prim-
itive operators. In both domains, we can see that the quality
of the operators improves over time. The primitives alone are
insufficient to achieve perfect test performance, motivating
our next experiments.

Figure 6: Test set performance versus learning iteration for
invoking learned, lifted policies to solve single-fluent goals
in the test set. Each learning iteration provides the agent with
only a single trajectory of data. In both domains, the policies
we learn quickly start to outperform invoking only the prim-
itives (represented by the blue dashed horizontal line). To
improve performance further, learn operators for these poli-
cies and plan with them; see Figure 7.

that are overly specific to the initial states it has seen so
far, which due to the exhaustive search for novelty make up
a very small portion of the space of initial states in P (I).
Therefore, it takes more iterations to train policies under
the Exhaustive strategy; however, in environments where
some important goals are very rare within P (G), this data-
collection strategy could outperform goal-babbling.

Limitations and Future Work
A major limitation of our current approach is that plan-

ning with the learned operators for policies is significantly
slower than planning with only the learned operators for
primitives. In a head-to-head comparison where both ap-
proaches are bound in terms of computation time, rather than
planning horizon, the primitives alone fare better than our
learned operators. For instance, on later iterations of learn-
ing in the Minecraft domain, planning with the learned poli-
cies takes around 3 seconds per problem, while planning
with primitives takes around 0.1 seconds per problem. The
reason for this slowdown is that each policy itself grows
to be complex very quickly, as it must capture a variety of
scenarios seen in the training data, leading to less efficient
STRIPS planning. For example, a policy for Holding an

Figure 7: Test set performance versus learning iteration for
planning with learned goal-conditioned policies and associ-
ated operators. The planner is resource-limited with a max-
imum horizon of 5. In both domains, it is clear that the best
performance is achieved by this unified approach.

object would have to reason about whether it is obstructed.

To alleviate this issue, one option is to turn to parametric
models, whose complexity would not grow (as logical de-
cision trees do) with the amount of training data. Another
option is to pursue aggressive pruning strategies at the level
of training data, individual skills, or sets of skills (Minton
1985). Training data could be pruned by selecting only sub-
trajectories from demonstrations, e.g., those that are most
common or most representative by some metric. Individual
policies could be pruned by removing preconditions or ef-
fects from operators or by regularizing the policies them-
selves. Sets of policies could be pruned by removing policies
that appear to hinder planning more than they help.

Scaling up our experiments to real-world domains will re-
quire innovating in several directions. To start, we intend
to generalize the methods presented here to stochastic do-
mains, which would likely require moving to probabilistic
inductive logic programming systems (De Raedt and Kerst-
ing 2008) as our learning algorithm. This would also allow
the system to be robust to both noise and inconsistent action
selection in the training data.

To continue building toward a general-purpose hierarchy,
two more major improvements are necessary to our archi-
tecture. First, learned policies should be able to invoke other
learned policies. Second, the primitive operators should be
allowed to improve while policies are being learned, since it
is unreasonable in larger domains for random exploration to
be enough to train completely correct primitive operators. In
both of these cases, an important question arises: how should
higher levels of the hierarchy be adapted when a lower level
operator is found to be incorrect? A very simple, domain-
independent strategy would be to discard higher levels of
the hierarchy when a lower-level update occurs, and re-build
these higher levels from new data; we hope to consider more
sophisticated approaches in the future.

Furthermore, we hope to investigate other data-collection
strategies, such as purposefully setting goals that are not too
easy based on the agent’s current skillset (Chaiklin 2003),
and especially to allow training on data that fails to reach
these goals, since useful signal can still be extracted here.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In Twenty-Third
International Joint Conference on Artificial Intelligence.
Baranes, A., and Oudeyer, P.-Y. 2010. Intrinsically moti-
vated goal exploration for active motor learning in robots: A
case study. In 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1766–1773. IEEE.
Blockeel, H., and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial intelligence
101(1-2):285–297.
Chaiklin, S. 2003. The zone of proximal development in
vygotsky’s analysis of learning and instruction. Vygotsky’s
educational theory in cultural context 1:39–64.
Coumans, E.; Bai, Y.; and Hsu, J. 2018. Pybullet physics
engine.
De Raedt, L., and Kersting, K. 2008. Probabilistic inductive
logic programming. In Probabilistic Inductive Logic Pro-
gramming. Springer. 1–27.
De Raedt, L. 1996. Induction in logic. Proceedings of
the 3rd International Workshop on Multistrategy Learning
1:29–38.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4):189–208.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial intelligence
3:251–288.
Florensa, C.; Held, D.; Wulfmeier, M.; Zhang, M.; and
Abbeel, P. 2017. Reverse curriculum generation for rein-
forcement learning. arXiv preprint arXiv:1707.05300.
Groshev, E.; Tamar, A.; Goldstein, M.; Srivastava, S.; and
Abbeel, P. 2018. Learning generalized reactive policies us-
ing deep neural networks. In AAAI Spring Symposium.
Held, D.; Geng, X.; Florensa, C.; and Abbeel, P. 2018. Au-
tomatic goal generation for reinforcement learning agents.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J. 2001. Ff: The fast-forward planning system.
AI magazine 22(3):57–57.
Jinnai, Y.; Abel, D.; Hershkowitz, D.; Littman, M.; and
Konidaris, G. 2019. Finding options that minimize planning
time. In Proceedings of the 36th International Conference
on Machine Learning.
Johnson, M.; Hofmann, K.; Hutton, T.; and Bignell, D. 2016.
The malmo platform for artificial intelligence experimenta-
tion. In IJCAI, 4246–4247.
Kaelbling, L. P., and Lozano-Pérez, T. 2010. Hierarchical
planning in the now. In Workshops at the Twenty-Fourth
AAAI Conference on Artificial Intelligence.
Konidaris, G., and Barto, A. G. 2007. Building portable
options: Skill transfer in reinforcement learning. In IJCAI,
volume 7, 895–900.

Konidaris, G., and Barto, A. G. 2009. Skill discovery in con-
tinuous reinforcement learning domains using skill chain-
ing. In Advances in neural information processing systems,
1015–1023.
Lavrac, N., and Dzeroski, S. 1994. Inductive logic program-
ming. In WLP, 146–160. Springer.
Minton, S. 1985. Selectively generalizing plans for
problem-solving. 596 – 599.
Mourao, K.; Zettlemoyer, L. S.; Petrick, R.; and Steedman,
M. 2012. Learning strips operators from noisy and incom-
plete observations. arXiv preprint arXiv:1210.4889.
Muggleton, S. 1991. Inductive logic programming. New
generation computing 8(4):295–318.
Oh, J.; Singh, S.; Lee, H.; and Kohli, P. 2017. Zero-shot task
generalization with multi-task deep reinforcement learning.
In Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, 2661–2670. JMLR. org.
Peters, J., and Schaal, S. 2008. Reinforcement learn-
ing of motor skills with policy gradients. Neural networks
21(4):682–697.
Pollock, J. L. 1998. The logical foundations of goal-
regression planning in autonomous agents. Artificial Intelli-
gence 106(2):267–334.
Quinlan, J. R. 1986. Induction of decision trees. Machine
learning 1(1):81–106.
Quinlan, J. R. 1990. Learning logical definitions from rela-
tions. Machine learning 5(3):239–266.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484.
Stolle, M., and Precup, D. 2002. Learning options in rein-
forcement learning. In International Symposium on abstrac-
tion, reformulation, and approximation, 212–223. Springer.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence 112(1-
2):181–211.
Tesauro, G. 1995. Temporal difference learning and td-
gammon. Communications of the ACM 38(3):58–68.
Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D. J.; and
Mannor, S. 2017. A deep hierarchical approach to lifelong
learning in minecraft. In Thirty-First AAAI Conference on
Artificial Intelligence.
Thrun, S., and Schwartz, A. 1995. Finding structure in re-
inforcement learning. In Advances in neural information
processing systems, 385–392.
Wang, Z.; Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez,
T. 2018. Active model learning and diverse action sampling
for task and motion planning. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
4107–4114. IEEE.
Wang, X. 1996. Planning while learning operators. In AIPS,
229–236.

