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Abstract

We develop a framework for social motivation in human-
robot interaction, where an autonomous agent is rewarded not
only by its environment, but also based on the mental state of
a human acting within this same environment. We concretize
this idea by considering partially observed environments in
which the agent’s reward function depends on the human’s
belief. In order to effectively reason about what actions to
take in such a setting, the agent must estimate both the envi-
ronment state and the human’s belief. Although instantiations
of this idea have been studied previously in various forms, we
aim to unify them under a single framework. Our contribu-
tions are three-fold: 1) we provide a general POMDP frame-
work for this problem setting and discuss approximations for
tractability in practice; 2) we define several reward functions
that depend on the human’s belief in different ways and sit-
uate them with respect to previous literature; and 3) we con-
duct qualitative and quantitative experiments in a simulated
discrete robotic domain to investigate the emergent behavior
of, and tradeoffs among, the proposed reward functions.

Introduction
Social motivation influences many of our daily interac-

tions. Broadly, social motivation refers to the idea that peo-
ple have an intrinsic drive to interact with others and be
accepted by them. In human-robot interaction, social mo-
tivation can be formulated as a way to incentivize an au-
tonomous agent based on the mental state of a human in
the world. Reasoning about another agent’s mental state is
crucial for practical robotic settings, from self-driving cars
to household robots. For instance, we may want to reward
a household robot for not only cleaning a kitchen, but also
making the human think the kitchen is clean, which could re-
quire additional communicative actions on the robot’s part.

The general idea of modeling other agents’ mental states
has been studied extensively (Wellman 1992; Vogel, Potts,
and Jurafsky 2013; Zettlemoyer, Milch, and Kaelbling
2009); however, the notion of incentivizing agents based on
mental states is relatively understudied (Gray and Breazeal
2012; Talamadupula et al. 2014), and these works typically
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Figure 1: We consider various formulations of social motivation in
reward function design, by rewarding an agent based on the beliefs
of other agents. Suppose we control a household robot working
on important electrical repairs. The human, who believes that the
robot is simply cleaning the home, asks it to prepare some food. If
the robot is equipped with the ability to reason that the human is not
aware of its current task, and the robot’s reward function involves
making the human believe it is being useful, then it will prioritize
its electrical repairs over preparing food and communicate to the
human that it is doing something more important. This illustrates
how an agent’s optimal behavior can be greatly influenced by the
impact of the mental states of other agents on its objective. These
various behaviors capture different modalities of socially motivated
interaction.

consider very specific problem settings and incentive struc-
tures. For instance, Jaques et al. (2019) study influence-
driven incentives, in which agents are rewarded for chang-
ing the behavior of other agents through their actions. As
another example, Renoux (2015) considers the problem of
reasoning for active information-gathering, but does not ex-
plore the impact of such objective functions in settings in-
volving multiple actors, such as human-robot interaction.
Araya et al. (2010) explicitly describe reward functions that
depend on the mental state of an agent, but do not discuss the
potential application of these rewards as tools for encourag-
ing social motivation. This work aims to unify all these pre-
vious approaches within a single framework that captures
social motivation in human-robot interaction.

To concretize the notion of “mental state,” we focus on
partially observed environments, which require both the
agent and the human to select actions based on their cur-
rent belief (probability distribution over states). We consider



settings where the agent’s reward function depends on the
human’s belief in addition to the environment state. There-
fore, in order to plan its actions, the agent must estimate not
only the environment state, but also the human’s belief, re-
quiring the agent to maintain (or approximate) a “belief over
beliefs.” The reward function’s dependence on the human’s
belief can be realized in various ways, leading to different
modes of interesting agent behavior. See Figure 1 for an il-
lustrative example of this idea.

Under this framework, we observe the most interesting
behavior when the human and the agent have heterogeneous
beliefs about the world, which arises from either asymmetric
initial knowledge or different observations in an episode.

Our contributions in this work are three-fold:
• We provide a general framework for this prob-

lem setting, a partially observable Markov decision
process (Kaelbling, Littman, and Cassandra 1998)
(POMDP). This framework allows us to directly lever-
age existing tools for solving POMDPs (Silver and Ve-
ness 2010; Somani et al. 2013; Kurniawati, Hsu, and Lee
2008). To make solving these social motivation prob-
lems tractable in practice, we discuss approximations in
both state estimation (via factoring and discretization)
and planning (via online Monte Carlo methods).

• We define several social motivation reward functions
that depend on the human’s belief in different ways and
situate them with respect to literature that propose sim-
ilar objective functions in related fields, such as single-
agent POMDP planning and intrinsic motivation for rein-
forcement learning.

• We conduct qualitative and quantitative experiments in
a simulated discrete robotic room-cleaning domain. In
this domain, we investigate the emergent behavior of the
different reward functions we propose and discuss their
trade-offs both in terms of task-level policy performance
and accuracy of the human’s belief.

We envision our framework, which focuses on belief
recognition, as a precursor to plan and intention recognition.
By adding high-level goals for agents in the environment,
possibly represented as factors in the state, our belief recog-
nition framework can be extended to intent recognition us-
ing standard Bayesian inference tools. If an agent is aware of
other agents’ planning mechanisms, it can simulate planning
using approximations of other agents’ beliefs, enabling plan
recognition. Activity recognition is already present in our
current framework’s observation model, in which an agent
receives observations of another agent’s actions.

Related Work
Estimating Mental Models Reasoning about other
agents’ mental models has been a well-studied problem for
decades. The theory of mind framework (Wellman 1992),
which describes our ability to reason about the mental states
of other people, has roots in psychology and philosophy. It
has also been successfully applied to various human-robot
interactive settings (Scassellati 2002; Hiatt, Harrison, and
Trafton 2011; Devin and Alami 2016). Typically, these ap-
proaches estimate the human’s belief in order to draw in-
ferences about the plan the human is executing, or the re-

ward function the human is following (Dragan 2017). Some
works have addressed the issue of nested (Vogel, Potts, and
Jurafsky 2013) or infinitely recursive (Zettlemoyer, Milch,
and Kaelbling 2009) belief modeling, which arise in cases
where each agent is trying to reason about the other’s rea-
soning process, which in turn depends on its own, etc.

We focus on a two-agent scenario where one of the ac-
tors is a human whose actions cannot be controlled. This
is in contrast to the field of multi-agent collaboration, no-
tably the decentralized POMDP (Dec-POMDP) (Oliehoek,
Cui, and Amato 2016) framework used for decision-making
for a team of collaborative agents. The most similar work to
ours is the I-POMDP framework (Gmytrasiewicz and Doshi
2005), which seeks to model partially observed environ-
ments where the beliefs of both agents are part of the state,
as we do. However, our work differs in several key ways:
we are considering only a single-agent setting and assume
that the human’s policy is given, we explicitly study the im-
pact of various reward functions that depend on the human’s
belief, and our framework is able to handle noise within the
agents’ perceptions of each other’s actions and observations.

Gray and Breazeal (2012) use a self-as-simulator model to
estimate the human’s belief state. While their work focuses
on visual perception, we describe a more general framework
where the robot may not necessarily have access to what the
human sees. Buehler and Weisswange (2018) consider the
problem of online inference of a human’s belief state using
observable human behavior, but they assume the robot has
perfect knowledge about the world; we aim to break down
this assumption because our primary point of interest is how
an agent can deal with inherent uncertainty over both its own
world state estimation and the uncertainty of another agent.

Belief-Dependent Rewards The idea of having belief-
dependent reward functions within POMDP settings has been
studied previously. Araya et al. (2010) proposed an exten-
sion to the classic POMDP framework where the agent can
be rewarded for having low-entropy beliefs and high ex-
pected returns from the environment under their belief (Eck
and Soh 2012). It was later shown (Spaan, Veiga, and Lima
2015) that this kind of uncertainty can be modeled directly
within the POMDP framework, preserving the theoretical
guarantees and existing solvers for POMDPs. Other work has
studied rewards that depend on the stability of the belief (Re-
noux 2015), emotion (Sequeira 2013), influence on other
agents’ actions (Jaques et al. 2019), and interpretability, i.e.
legible planning (Chakraborti et al. 2019).

Social Motivation Framework
In this section, we provide a general POMDP framework

for our setting of human-robot interactive social motivation.
Partially observable Markov decision process. An undis-

counted POMDP (Kaelbling, Littman, and Cassandra 1998)
is a tuple 〈S,A,Ω, O, T,R,H〉 with: state space S, ac-
tion space A, observation space Ω, observation model
O(s′, a, o) = P (o | s′, a), transition model T (s, a, s′) =
P (s′ | s, a), reward function R(s, a), and horizon H . Here,
s, s′ ∈ S, a ∈ A, and o ∈ Ω. The agent selects an action
at each timestep, causing the state to transition according to



T and the agent to receive an observation and reward ac-
cording to O and R. As the state is unobserved by the agent,
it must maintain a belief BA(s), a distribution over states
(the subscript A stands for “agent”). The objective of the
agent is to find a policy π, a mapping from beliefs to actions,
that maximizes expected total reward, Eπ

[∑H
t=0R(st, at)

]
,

where the expectation is taken over stochasticity in the ini-
tial state and transitions. Given an action a and observation
o, a Bayes filter provides an exact update expression for the
belief: B′A(s′) ∝ O(s′, a, o)

∑
s∈S T (s, a, s′)BA(s).

Formally, our social motivation model for human-robot
interaction is a single-agent POMDP where world states s are
pairs 〈sE , BH〉, representing the Environment state and the
belief of the Human. Therefore, the reward function depends
on the human’s belief, which is unobserved by the agent.
This means the agent’s belief BA must estimate a joint dis-
tribution over sE and BH . The human takes actions in the
world and receives observations alongside the agent, which
it uses to update its own beliefBH , but does not reason about
the agent’s state of mind in its decision-making and state es-
timation. This allows us to circumvent the issue of infinitely
nested beliefs (Zettlemoyer, Milch, and Kaelbling 2009).

The complete model is shown in Figure 2. Crucially, the
human’s belief BH affects the agent in two ways: directly
through the reward function R and indirectly through future
states by affecting the actions the human takes.

Figure 2: Our model for social motivation in human-robot inter-
action. From the agent’s perspective, the human can be treated as
a part of the world, but the agent must reason about the human’s
belief in order to plan properly, since these beliefs affect the agent
through both the rewards R and future states. Red: Agent’s activi-
ties. Green: Human’s activities. Blue: Environment’s activities.

In a timestep, the following occur sequentially:

1. The agent selects action aA = π(BA) using its determin-
istic policy π. The action aA is executed, transitioning the
state to an intermediate siE ∼ P (siE | sE , aA).

2. The human receives a corrupted observation ãA ∼
P (ãA | aA) of the agent’s action. The agent receives
an environment observation oA ∼ P (oA | siE , aA).

3. The human updates their belief to BiH based on ãA.

4. The agent receives a reward R(siE , B
i
H , aA) from the in-

termediate siE and BiH resulting from its action aA.

5. The human samples an action aH ∼ πH(BiH) from their
policy πH . The action aH is executed in the world, tran-
sitioning the state to s′E ∼ P (s′E | siE , aH).

6. The human receives an environment observation oH ∼
P (oH | s′E , aH); the agent receives corrupted observa-
tions ãH ∼ P (ãH | aH) and õH ∼ P (õH | ãH , oH) of
the human’s action and observation.

7. The human updates their belief to B′H based on aH , oH .

8. The agent updates its belief to B′A based on oA, aA, õH ,
and ãH via a (possibly approximate) Bayes filter.

We factor the timestep this way so the agent’s reward de-
pends solely on its own action, not on the action of the hu-
man. This factorization affords a more intuitive grasp of how
the agent’s behavior is affected by a belief-dependent re-
ward, since it isolates the effect of the agent’s action (see
Experiments). Note that we could also generalize the model
by defining a timestep as the agent and human acting simul-
taneously, with transition model P (s′E | sE , aA, aH) and
human belief update model P (B′H | BH , aH , oH , ãA). The
reward function would then be defined as R(s′E , B

′
H , aA).

Formally, we simply have a single-agent POMDP setting:
from the agent’s perspective, the human and their actions
can be thought of as part of the environment. Thus, steps
2-7 are just a factored state transition, with the reward func-
tion depending on an intermediate state in this transition.
The agent’s objective is to find a policy π that maximizes
expected total reward, Eπ

[∑H
t=0R(siE,t, B

i
H,t, aA,t)

]
.

We require the following conditional probabilities: (1)
The human’s policy πH(BH) = P (aH | BH). (2) The hu-
man’s belief update P (B′H | BH , aH , oH , ãA), defined in
this case as two sequential belief updates P (BiH | BH , ãA)
and P (B′H | BiH , aH , oH). (3) The environment transi-
tion model P (s′E | sE , aA, aH), defined in this case as
two sequential transitions P (siE | sE , aA) and P (s′E |
siE , aH). (4) Agent and human environment observation
models P (oA | s′E , aA) and P (oH | s′E , aH). (5) Corruption
models P (ãA | aA), P (ãH | aH), and P (õH | ãH , oH).

We note that this model can flexibly handle a variety of as-
sumptions that could be made for tractability or practical ap-
plicability. For instance, the term P (B′H | BH , aH , oH , ãA)
in principle captures a distribution over all possible hu-
man beliefs; in practice, it can be easier to assume that the
human uses a Bayes filter: P (B′H | BH , aH , oH , ãA) =

1[BH
aH ,oH ,ãA−−−−−−→ B′H ]. Also, if one is using an environment

where it is not sensible for the agent and human to see each
others’ actions and observations, then the corruption models
can be set to uniform, thus carrying no information.

In this work, we are not considering the model-learning
problem (Shani, Brafman, and Shimony 2005; Doshi and
Roy 2007); we assume all the conditional probabilities are
given and instead focus on 1) approximations for tractable
planning and 2) understanding the emergent behavior under
different instantiations of the reward function.

Tractability. We briefly discuss approximations for state
estimation and planning to make this framework practical.



We leverage two key ideas for approximate state estima-
tion: factoring and discretization. Instead of maintaining a
joint belief BA over both sE and BH , we estimate BA as
a product of marginals over sE and BH , tracked separately.
Furthermore, to represent the belief over BH , which in the-
ory is a distribution over all possible human beliefs, we dis-
cretize the probability space over each factor in the state, and
maintain BA only over this coarser granularity. Of course,
this causes loss in precision, and may cause arbitrarily bad
performance in adversarially designed domains. This dis-
cretization approach can be made more robust by employing
a tile coding scheme (Sherstov and Stone 2005), which we
leave for future work. We discretize further by employing
particle filters (Djuric et al. 2003) to estimate sE and BH .

For planning, we employ standard online POMDP solu-
tion strategies (Silver and Veness 2010; Somani et al. 2013;
Bonet and Geffner 2000), which estimate the value function
from Monte Carlo rollouts to give the estimated best next
action to take; the planner is run on every timestep.

Reward Functions for Social Motivation
In this section, we describe several ways to instantiate

the reward functionR(siE , B
i
H , aA) from the framework de-

tailed in the previous section, drawing on the notion of social
motivation. In doing so, we aim to unify existing literature in
related fields and showcase the generality of our framework.

To begin, suppose that the environment defines a reward
function, which we call the task-level reward: R̄(siE , aA).

Task-Only. The simplest instantiation of a reward func-
tion in our framework just ignores the human’s belief:

R(siE , B
i
H , aA) = R̄(siE , aA). (Task-Only)

Therefore, the agent is incentivized only to perform as well
as possible at its task, and only cares about the human’s be-
lief to the extent that the human’s actions affect the environ-
ment state. In many settings, it can be useful to reward the
agent explicitly based on properties of the human’s belief.

Human-Expectation. Drawing on this intuition, we next
consider a reward that asks the agent to not only perform
well at its task, but also make the human believe it is doing
so (under the same task-level reward function R̄):

R(siE , B
i
H , aA) = R̄(siE , aA) + λEs̄iE∼Bi

H

[
R̄(s̄iE , aA)

]
.

(Human-Expectation)
Here, the parameter λ > 0 controls the relative importance
of these two objectives. This objective will typically lead
to explanatory behavior, in which the agent describes why
it is choosing to perform certain actions, so that the human
understands the context behind the agent’s decisions. It is
useful in settings such as household robotics, where a robot
helper should make sure the human believes it is perform-
ing its tasks properly. Note that in this reward formulation,
we are assuming that the agent’s action aA is perfectly seen
by the human. This optimistic assumption could easily be re-
placed by slight variants, such as taking an expectation under
the corruption model P (ãA | aA).

This Human-Expectation reward is adapted from a reward
proposed by Araya et al. (2010) for planning with rewards
that depend on an agent’s own belief.

Human-Certainty. Next, we have a reward function that
asks the agent to perform well at its task while reducing un-
certainty in the human’s belief:

R(siE , B
i
H , aA) = R̄(siE , aA)− λS(BiH)

= R̄(siE , aA) + λEs̄iE∼Bi
H

[
logBiH(s̄iE)

]
.

(Human-Certainty)

Here, the notation S(BiH) refers to the Shannon entropy of
the human’s belief, and is highest when this belief is dif-
fuse, leading to lower rewards. Again, λ > 0 trades off be-
tween these two terms in the objective. This objective will
typically lead to communication of declarative information,
where the agent transmits facts about the state in order to
reduce the human’s uncertainty about it (assuming one has
taken care to design the action space such that transmitting
incorrect information is disallowed). This reward function is
useful in settings such as driving; a human driver will of-
ten start slowing down early on at a traffic jam to implicitly
communicate the situation ahead to the driver behind them.

This Human-Certainty reward is also adapted from a re-
ward proposed by Araya et al. (2010), and can be eas-
ily combined with the previous one. Note that this reward
function can be adapted to adversarial settings by choosing
λ < 0, thus incentivizing obfuscation of the human’s belief.

The remaining beliefs we study depend on both BH and
BiH : the human’s belief before and after the robot acts, re-
spectively. This requires a small change to the framework
described in the previous section; we will not burden nota-
tion here by redefining the relevant terms.

Influence. We next consider a reward that encourages the
agent to take actions resulting in a large change in the hu-
man’s policy, measured via the KL-divergence:

R(siE , BH , B
i
H , aA)

= R̄(siE , aA) + λDKL(πH(BH) ‖ πH(BiH))

= R̄(siE , aA) + λDKL(P (aH | BH) ‖ P (aH | BiH)).
(Influence)

Here, λ > 0 is a tradeoff parameter. Recall that the human
updates their belief on the basis of their perception of the
agent’s action, and also indirectly through the influence the
agent’s action has on the environment state. Therefore, this
objective incentivizes the agent to act in ways that cause the
human’s belief update to alter their policy. This reward func-
tion is useful, for instance, in situations where a robot must
strive to get the attention of a human operator or teammate,
such as to warn them about something in the environment
that they do not know about, to get them to change their be-
havior. Note that one could also set λ < 0 to incentivize the
agent to keep the human’s policy as stable as possible.

A similar reward function, which serves as the inspiration
for this Influence reward, was studied in the context of in-
trinsic motivation for deep reinforcement learning by Jaques
et al. (2019). Their experiments show that motivating agents
in a multi-agent system to alter each others’ policies as much
as possible provides a useful exploratory bias for coordina-
tion games, leading to more sample-efficient learning.



Human-Stability. Finally, we consider a reward that en-
courages the agent to keep the human’s belief stable:

R(siE , BH , B
i
H , aA) = R̄(siE , aA)− λDKL(BH ‖ BiH).

(Human-Stability)

Again, λ > 0 is a tradeoff parameter. This objective incen-
tivizes the agent to act in ways that cause low-magnitude up-
dates to the human’s belief, and thus will typically lead to the
agent taking less surprising or risky behavior when complet-
ing a task. This can be useful in factory settings where hu-
mans are often nearby robots performing tasks; these robots
should take care to act in ways that do not cause the humans
to suddenly believe that they are broken or behaving poorly.

This Human-Stability reward function is inspired by a
similar formulation that was studied by Renoux (2015)
within an information-gathering setting. In that work, the
KL-divergence between an agent’s old and new beliefs is
used as a measure of novelty of an observation; if an obser-
vation is predictable under the belief, it will not affect the
belief too much, and thus has lower expected novelty. Here,
we instead study the utility of this reward formulation as a
tool for social motivation.

Note that all of the reward functions described in this sec-
tion are the true reward functions of the unobserved POMDP
state. In practice, the agent will optimize an expectation over
these rewards with respect to its current belief.

Experiments
We aim to understand the behavior induced by the var-

ious reward functions, via qualitative and quantitative ex-
periments in a simulated discrete robotic room-cleaning do-
main. In this domain, we investigate the emergent behavior
of the reward functions we propose, and discuss their trade-
offs both in terms of task-level policy performance and accu-
racy of the human’s belief. We find that the reward functions
produce a suite of interesting behavior to analyze, and that
our approximation strategies allow our framework to scale
reasonably well to larger domains.

Our experiments are designed to answer the following:
• What kind of emergent behavior results from each of our

proposed social motivation reward functions in practice?
• How does each reward function impact 1) the typical ac-

curacy of the true human belief and 2) the task-level re-
wards received by the agent?

• How well does our framework scale to larger domains?

Domain Description
We conduct our experiments on a discrete household

robot domain where the environment is a gridworld repre-
senting a house with n bedroom locations: L1, L2, . . ., Ln.
The state space is as follows: let each s ∈ S consist of n state
variables {L1, L2, ..., Ln}, which denote the binary-valued
cleanliness (either clean or dirty) of the rooms. See Figure 6
(left) for a visualization of this domain when n = 15.

The agent is a household cleaning robot whose set of ac-
tions is AA = {c1, c2, ..., cn}; at each timestep, the robot
can choose an action aA ∈ AA to clean one of the rooms
in the house (action ci cleans bedroom Li). After its action,

the robot receives a (noisy) observation oA about whether
it successfully cleaned the room, and the human receives a
(noisy) observation ãA about the robot’s action.

The human chooses an action from the set AH =
{d1, d2, ..., dn}, where each action aH ∈ AH denotes dirty-
ing one of the rooms in the house. After each action, the
human receives a (noisy) observation oH about whether it
dirtied the room, and the robot receives (noisy) observations
ãH and õH about the human’s action and observation.

Within a timestep, the robot’s action ci can stochastically
transition room Li from dirty to clean, and the human’s ac-
tion dj can stochastically transition room Lj from clean to
dirty. Additionally, a clean room that is not acted on by the
human or robot has some probability of becoming dirty.

The robot receives positive task-level rewards for cleaning
dirty rooms (greater for higher-numbered rooms) and nega-
tive task-level rewards for cleaning already-clean rooms.

Experimental Setup
Human Policy and Belief Update The human’s policy
πH is deterministic: the human will choose to act upon the
room that has the highest probability of being clean, under
their belief BH . In case of a tie, the human will choose to
act upon the highest-numbered room.

We model the human belief update as a Bayes filter. Since
πH is deterministic, we have that aH = πH(BH).

Approximation Methods As the states of the rooms are
independent, the human and robot beliefs about each state s
are a set of n probabilities where entry i corresponds to the
probability that room Li is clean.

The robot’s belief over the human’s belief is approximated
as a set of particles; we update this distribution via particle
filtering (Djuric et al. 2003). Furthermore, for the robot’s
belief we discretize the space of possible beliefs the human
could have about each room (a number between 0 and 1) into
ten buckets, and maintain only a discrete distribution over
these ten buckets. We use POMCP (Silver and Veness 2010),
an online POMDP planning algorithm, to choose actions. In
this process, the robot has only sample access to the models
and reward function, rather than the complete distributions.

Model Descriptions In the environment transition model,
the robot’s action aA successfully cleans a dirty room with
probability 0.9, while the human’s action aH dirties a clean
room with probability 0.5. In addition, any clean room that is
not acted on by either becomes dirty with probability 0.2. In
the environment observation model, the robot (resp. human)
receives the correct observation about the state of the room
it is in with probability 0.8 (resp. 0.9). The corruption mod-
els are as follows. The robot receives correct observations
ãH and õH about the human’s action and observation with
probability 0.85 for each; the remainder is split uniformly
among all other possibilities. The human receives the cor-
rect observation ãA about the robot’s action with probability
0.9, again with the remainder split uniformly.

Qualitative Results and Discussion
In order to clearly understand the emergent behavior re-

sulting from each reward function, we perform qualitative



Figure 3: Qualitative results of emergent behavior for each reward
function. See text for detailed descriptions.

analysis in a simple environment with n = 3 rooms. All ex-
periments use the same initial state: room 2 is clean, while
rooms 1 and 3 are dirty; the robot initially incorrectly be-
lieves that all the rooms are dirty; the human initially be-
lieves that room 2 is clean with probability 0.7 and rooms
1 and 3 are almost surely dirty. Crucially, in these experi-
ments, the human and robot initially start out with heteroge-
neous beliefs, and it is this asymmetry in their beliefs that
allows us to observe interesting emergent behavior in the
early timesteps of episodes in these experiments.

Each episode consists of a sequence of 10 timesteps ex-
ecuted from this initial state. In Figure 3, we display the
first four timesteps for each reward function. Each timestep
shows the state after the robot and the human have acted.

Using the Task-Only reward function (a), the robot cleans
the dirtiest room (3) on timestep 1. On the same timestep, the
human enters the room and makes Room 3 dirty again, but
receives the observation that it is actually clean. The robot
observes the human’s observation and now believes Room 1
and Room 2 are dirty, and that Room 3 probably is clean. It
thus chooses to clean Room 2 on timestep 2, ignoring that
the human believes Room 2 is already clean.

With the Human-Expectation reward (b), the robot di-
verges on timestep 2, now choosing to clean Room 1 instead
of 2, since under the human’s belief, Room 2 is clean. On

timestep 3, the robot and human both believe that Room 3
has the highest probability of being dirty. Thus, the robot
chooses to clean Room 3.

The Human-Certainty reward function (c) encourages the
robot maximize the human’s certainty about the world state.
Since the human starts off certain that Room 1 and 3 are
dirty, but only believes with 0.7 probability that Room 2 is
clean, the robot chooses to clean Room 2, and in doing so
provides the human with more information about the state of
that room. Due to the stochasticity in transitions and obser-
vations, the human’s belief will never collapse to complete
certainty, so the robot repeatedly cleans Room 2 to increase
the human’s certainty about Room 2’s state.

Under the Influence reward function (d), the robot at-
tempts to take actions that alter the human’s behavior. The
human initially believes that Room 2 is clean, and thus
would typically move to Room 2 next, because their policy is
to move to the room they believe has the highest likelihood
of being clean. In order to change this behavior, the robot
cleans Room 3. Similar to (a) and (b), the human observes
(incorrectly) that Room 3 is clean, and thus would typically
choose to stay in Room 3 on timestep 2. Thus, the robot
once again decides to alter the human’s behavior by clean-
ing Room 1 in timestep 2. This “cat-and-mouse” behavior is
a direct consequence of the Influence reward.

Finally, the Human-Stability reward function (e) encour-
ages the robot to keep the human’s belief as stable as pos-
sible. Since the human already believes with 0.7 probability
that Room 2 is clean, the robot chooses to clean Room 2
again to cause the least amount of change in the human’s
belief. Similar logic follows for the remaining timesteps.

In summary, the various formulations of belief-dependent
reward functions result in the expected emergent behavior
for this n = 3 domain setting. We are able to unify works
that aim to produce specific types of socially motivated be-
havior; the qualitative results presented suggest that all these
behaviors can be realized by changing only the reward func-
tion, within a single unified framework.

Quantitative Results and Discussion
We conduct quantitative experiments to investigate the ef-

fect of each reward function on both task-level reward and
human belief accuracy at various settings of λ, the reward
function trade-off parameter. We use the same n = 3 envi-
ronment and initial state as in the qualitative experiments.
Each episode consists of 3 timesteps.

Figure 4 shows the effect of each reward function on to-
tal task-level reward for the 3 timesteps, while Figure 5 il-
lustrates the effect on the average accuracy of the true hu-
man belief. We use the basic task-only reward function (blue
curve) as a control. There are several interesting trends here:

1) For Human-Certainty and Human-Stability, λ has a neg-
ative effect on task-level reward but a positive effect on
the true human belief’s accuracy. Intuitively, if certainty
and stability are weighted more heavily, the robot is in-
centivized to be redundant in the interest of clarity. This
redundancy by the robot leads to higher accuracy of the
human’s belief, at the expense of task-level rewards.



Figure 4: Effect of λ (trade-off parameter) on task-level (environ-
ment) reward for each reward function. Weighting the certainty or
stability of the human’s belief too highly lowers task-level rewards
(green & purple vs. blue), while acting in a way that the human
expects is beneficial improves task-level rewards (orange vs. blue).

2) For the Human-Expectation and Influence rewards, λ has
a positive effect on task-level reward. In the initial state,
the human’s belief is more accurate than the robot’s, and
so the robot receives higher task-level reward by acting in
ways that the human believes to be beneficial. Similarly
for Influence, a positive λ discourages the robot from tak-
ing the same action repeatedly. This has a positive impact
on task-level reward because the robot is less likely to in-
cur the penalty for cleaning an already-clean room.

3) For the Influence reward, λ has a negative effect on the ac-
curacy of the human’s belief. This is because if the robot
tries to influence the human’s actions, it needs to change
the human’s belief sharply, which generally leads to the
human having higher uncertainty about the state.

4) The task-level reward achieved with the Human-
Expectation reward function is higher than that of the
baseline Task-Only reward function, for positive values of
λ. This is because the human’s belief is initially more ac-
curate than the robot’s. Even in this simple environment,
we can see that considering both agents’ beliefs is more
robust to the error in any single agent’s individual belief.

Finally, we show that our implementation, even with its
“belief over beliefs” estimation, scales reasonably with in-
creasing domain size (Figure 6). While the performance can
still be improved, our framework demonstrates tractability
without incurring huge losses in accuracy of information.

Limitations and Future Work
A major limitation of the current approach is that in or-

der to allow our method to scale up to medium-sized do-
mains, we found it necessary for the agent’s belief over the
human’s belief to reason over a coarse discretization of the
human’s belief space. Of course, such a method does not
scale well to higher-dimensional beliefs, but was sufficient
for the factored domain we considered in our experiments.

Figure 5: Effect of λ (trade-off parameter) on the accuracy of
the true human belief (relative to the true environment state) for
each reward function. The human’s belief tends to be most accu-
rate when the robot is incentivized to make it have low entropy,
like in the certainty and stability rewards (green & purple vs. rest).

Figure 6: Left: Visualization of the domain with n = 15 rooms.
The robot receives higher reward for cleaning rooms that have more
dirt in them. Right: Average planning time (per timestep) versus the
size of the domain. We can see that planning time scales reasonably
with increasing domain size, up to medium-sized domains.

Future work should investigate better representations of the
agent’s belief, via distributions whose support affords bet-
ter coverage of the underlying space of human beliefs. For
instance, one possibility is to treat the human’s belief as pa-
rameterized by a set of latent variables, which could repre-
sent parameters of a known distribution or weights of a neu-
ral network, and keeping a distribution over these latents.

Another avenue for future work is to use other approxi-
mate POMDP planning strategies such as DESPOT (Somani
et al. 2013) to further improve scalability. We would expect
to still be able to observe interesting behavior emerging from
our social motivation rewards in more complex domains.

It would also be interesting to explore the notion of rea-
soning over possible goals that the human may have, rather
than only beliefs as we do here. In principle, the agent could
have uncertainty about beliefs, desires, and intentions; rea-
soning about all of these together is a necessary step toward
enabling practically useful decision-making. This reasoning
would also act as an avenue for practical plan and intention
recognition in human-robot collaborative settings.
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