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MIT Computer Science and Artificial Intelligence Laboratory
{tslvr, ronuchit, curtisa, jbt, tlp, lpk}@mit.edu

Abstract

Real-world planning problems often involve hundreds or even
thousands of objects, straining the limits of modern planners.
In this work, we address this challenge by learning to predict
a small set of objects that, taken together, would be sufficient
for finding a plan. We propose a graph neural network archi-
tecture for predicting object importance in a single inference
pass, thus incurring little overhead while greatly reducing the
number of objects that must be considered by the planner.
Our approach treats the planner and transition model as black
boxes, and can be used with any off-the-shelf planner. Empir-
ically, across classical planning, probabilistic planning, and
robotic task and motion planning, we find that our method re-
sults in planning that is significantly faster than several base-
lines, including other partial grounding strategies and lifted
planners. We conclude that learning to predict a sufficient set
of objects for a planning problem is a simple, powerful, and
general mechanism for planning in large instances. Video:
https://youtu.be/FWsVJc2fvCE Code: https://git.io/JIsqX

1 Introduction
A key research agenda in classical planning is to ex-

tend the core framework to large-scale real-world applica-
tions. Such applications will often involve many objects,
only some of which are important for any particular goal.
For example, a household robot’s internal state must include
all objects relevant to any of its functions, but once it re-
ceives a specific goal, such as boiling potatoes, it should re-
strict its attention to only a small object set, such as the pota-
toes, pots, and forks, ignoring the hundreds or even thou-
sands of other objects. If its goal were instead to clean the
sink, the set of objects to consider would vary drastically.

More generally, we consider planning problems with large
(but finite) universes of objects, where only a small subset
need to be considered for any particular goal. Popular heuris-
tic search planners (Hoffmann 2001; Helmert 2006; Geffner
and Lipovetzky 2012) scale poorly in this regime (Figure 1),
as they ground actions over the objects during preprocess-
ing. Lifted planners (Ridder 2014; Corrêa et al. 2020) avoid
explicit grounding, but struggle during search; we find that
a state-of-the-art lifted planner (Corrêa et al. 2020) fails to

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
* Equal contribution.

Figure 1: Time taken by Fast Downward (Helmert 2006) in
the LAMA-first mode on various IPC domains, as a func-
tion of the number of extraneous objects in the problem. The
x-axis is the number of objects added to a small sufficient set
(Definition 2). Curves show a median across 10 problems;
shaded regions show the 25th to 75th percentiles. We can
see that planning time gets substantially worse as the num-
ber of extraneous objects increases; real-world applications
of planning will often contain large numbers of such objects
for a particular goal. In this work, we learn to predict a small
subset of objects that is sufficient for planning, leading to
significantly faster planning than both Fast Downward on its
own and other learning-based grounding methods.

solve any test problem in our experiments within the time-
out (but it can usually solve the much smaller training prob-
lems). In this many-object setting, one would instead like to
identify a small sufficient set of objects before planning, but
finding this set is nontrivial and highly problem-dependent.

In this work, we propose to learn to predict subsets of ob-
jects that are sufficient for solving planning problems. This
requires reasoning about discrete and continuous properties
of the objects and their relations. Generalizing to problems
with more objects requires learning lifted models that are
agnostic to object identity and count. We therefore propose
a convolutional graph neural network architecture (Scarselli



et al. 2008; Kipf and Welling 2016; Battaglia et al. 2018) that
learns from a modest number (< 50) of small training prob-
lems and generalizes to hard test problems with many more
objects. On the test problems, we use the network to predict
a sufficient object set, remove all facts from the initial state
and goal referencing excluded objects, and call an off-the-
shelf planner on this reduced planning problem. For com-
pleteness, we wrap this procedure in an incremental loop
that considers more objects until a solution is found.

Object importance prediction offers several advantages
over alternative learning-based approaches: (1) it can treat
the planner and transition model as black boxes; (2) its run-
time does not depend on the number of ground actions (for
a constant number of objects); (3) it permits efficient infer-
ence, therefore contributing negligibly to the overall plan-
ning time; and (4) it allows for a large margin of error in one
direction, since the planning time can improve substantially
even if only some irrelevant objects are excluded (Figure 1).

Gathering training data can be challenging in this setting
because it requires labels of which objects are relevant; it
would be impractical to assume that such labels are given.
Instead, we propose a greedy approximate procedure for
generating these labels automatically, which is only con-
ducted in the relatively small training problems.

In experiments, we consider classical planning, proba-
bilistic planning, and robotic task and motion planning, with
test problems containing hundreds or thousands of objects.
Our method, Planning with Learned Object Importance
(PLOI), results in planning that is much more efficient than
several baselines, including policy learning (Groshev et al.
2018; Rivlin, Hazan, and Karpas 2020) and partial action
grounding (Gnad et al. 2019). We conclude that object im-
portance prediction is a simple, powerful, and general mech-
anism for planning in large instances with many objects.

2 Related Work
Planning with Many Objects. Planning for problem in-
stances that contain many objects is one of the main motiva-
tions for ongoing research in lifted planning (Ridder 2014;
Corrêa et al. 2020). In STRIPS-like domains, lifted planners
avoid the expensive preprocessing step of grounding the ac-
tions over all objects. Another way to alleviate the burden of
grounding is to simplify the planning problem by creating
abstractions (Dearden and Boutilier 1997; Dietterich 2000;
Hernandez-Gardiol 2008; Abel, Hershkowitz, and Littman
2017). Our object importance predictor can also be viewed
as a type of learned abstraction selection (Konidaris and
Barto 2009; Riddle et al. 2016; Haslum et al. 2007).

Relational Representations for Learning to Plan. Our
work uses graph neural networks (GNNs) (Scarselli et al.
2008; Kipf and Welling 2016; Battaglia et al. 2018), an in-
creasingly popular choice for relational machine learning
with applications to planning (Wu et al. 2020; Ma et al.
2020; Shen, Trevizan, and Thiébaux 2020; Rivlin, Hazan,
and Karpas 2020). One advantage of GNNs over logical rep-
resentations (Muggleton 1991; Lavrac and Dzeroski 1994;
Džeroski, De Raedt, and Driessens 2001) is that GNNs na-
tively support continuous object-level and relational prop-

erties. We make use of this flexibility in our experiments,
showing results in a simulated robotic environment.

Generalized Planning. Our work may be seen as an in-
stance of generalized planning, which broadly encompasses
methods for collectively solving a set of planning problems,
rather than a single problem in isolation (Jiménez, Segovia-
Aguas, and Jonsson 2019). Other approaches to generalized
planning include generalized policy learning (Fikes, Hart,
and Nilsson 1972; Groshev et al. 2018; Gomoluch, Alra-
jeh, and Russo 2019), incremental search (Koenig et al.
2004; Pommerening and Helmert 2013), and heuristic or
value function learning (Yoon, Fern, and Givan 2008; Ar-
faee, Zilles, and Holte 2011; Silver et al. 2016; Shen, Tre-
vizan, and Thiébaux 2020). Incremental search and heuristic
learning are complementary to our work and could be easily
combined; generalized policy learning suggests a different
mode of execution (executing the policy without planning)
and we therefore include it as a baseline in our experiments.

The work perhaps most similar to ours is that of Gnad
et al. (2019), who propose partial action grounding as an-
other approach to generalized planning in large problems.
Rather than predicting the probability that objects will be in-
cluded in a plan (as we do), their approach predicts the prob-
ability that ground actions will be included. We include two
versions of this approach as baselines in our experiments,
including the implementation provided by the authors.

3 Problem Setup
We now give background and describe our problem setup.
A property is a real-valued function on a tuple of objects.

For example, in the expression pose(cup3) = 5.7, the
property is pose and the tuple of objects is 〈cup3〉. Pred-
icates, e.g., on in the expression on(cup3, table) =
True, are a special case of properties where the output is bi-
nary. For simplicity, we assume properties have arity at most
2; higher-order ones can often be converted to an equivalent
set of binary (arity 2) properties (Rivlin, Hazan, and Karpas
2020). We treat object types as unary (arity 1) properties.

A planning problem is a tuple Π = 〈P,A, T,O, I, G〉,
whereP is a finite set of properties,A is a finite set of object-
parameterized actions, T is a (possibly stochastic) transition
model,O is a finite set of objects, I is the initial state, andG
is the goal. A state is an assignment of values to all possible
applications of properties in P with objects in O. A goal is
an assignment of values to any subset of the ground proper-
ties, which implicitly represents a set of states. We use S to
denote the set of possible states and G to denote the set of
possible goals over P . A ground action results from apply-
ing an object-parameterized action inA to a tuple of objects
in O; for example, pick(?x) is an object-parameterized
action and pick(cup3) is a ground action. The transition
model T defines the dynamics of the environment; it maps a
state, ground action, and next state to a probability.

We focus on planning problems with extraneous objects:
ones that, if ignored, would make planning easier. The meth-
ods we propose are biased toward this subclass of planning
problems and would not offer benefits in problems for which
planning is easier, or only feasible, with all objects.



PLANNING WITH LEARNED OBJECT IMPORTANCE
Input: Planning problem Π = 〈P,A, T,O, I, G〉.
// See Section 3

Input: Object scorer f . // See Section 4
Hyperparameter: Geometric threshold γ.
// Step 1: compute importance scores
Compute score(o) = f(o, I,G) ∀o ∈ O
// Step 2: incremental planning
for N = 1, 2, 3, ... do

// Select objects above threshold

Ô ← {o : o ∈ O, score(o) ≥ γN}
// Create reduced problem & plan

Π̂← REDUCEPROBLEM(Π, Ô)

π ← PLAN(Π̂)
// Validate on original problem

if ISSOLUTION(π,Π) or Ô = O then
return π

Algorithm 1: Pseudocode for PLOI. In practice, we perform two
optimizations: (1) plan only when the object set Ô changes, so
that PLAN is called at most |O| times; and (2) assign a score of
1 to all objects named in the goal. See Section 4 for details and
Figure 2 for an example.

We consider the usual learning setting where we are first
given a set of training problems, and then a separate set of
test problems. All problems shareP ,A, and T , but may have
differentO, I , andG. In general, the test problems will have
a much larger set of objects O than the training problems.

We are also given a black-box planner, denoted PLAN,
which given a planning problem Π as described above, pro-
duces either (1) a plan (a sequence of ground actions) if T
is deterministic; or (2) a policy (a mapping from states to
ground actions) if T is stochastic. A plan is a solution to Π
if following the actions from the initial state reaches a goal
state. A policy is a solution to Π if executing the policy from
the initial state reaches a goal state within some time hori-
zon, with probability above some threshold; in practice, this
can be approximated by sampling trajectories. Going for-
ward, we will not continue to make this distinction between
plans and policies; in either case, at an intuitive level, PLAN
produces ground actions that drive the agent toward its goal.

Our objective in this work is to maximize the number of
test problems solved within some time budget. Because the
test problems contain many objects, and planners are often
highly sensitive to this number, we will follow the broad ap-
proach of learning a model (on the training problems) that
speeds up planning (on the test problems).

4 Planning with Object Importance
In this section, we describe our approach for learning to

plan efficiently in large problems. Our main idea is to learn
a model that predicts a sufficient subset of the full object
set. At test time, we use the learned model to construct a re-
duction of the planning problem, plan in the reduction, and
validate the resulting plan in the original problem. To guar-
antee completeness, we repeat this procedure, incrementally

Figure 2: Overview of our method, PLOI, with an example.
Left: To solve this problem, the robot must move block A
to the free space, then stack B onto D. The GNN computes
the per-object importance score. Block C is irrelevant, and
therefore it receives a low score of 0.03. Right: We perform
incremental planning. In this example, γ = 0.95, so that
γ2 ≈ 0.9. The first iteration tries planning with the object
set {B, D}, which fails because it does not consider the ob-
structing A on top of B. The second iteration succeeds, be-
cause the object set {A, B, D} is sufficient for this problem.

growing the subset until a solution is found. This over-
all method — Planning with Learned Object Importance
(PLOI) — is summarized in Algorithm 1 and Figure 2.

We now describe PLOI in more detail, beginning with a
more formal description of the reduced planning problem.
Definition 1 (Object set reduction). Given a planning prob-
lem Π = 〈P,A, T,O, I, G〉 and a subset of objects Ô ⊆ O,
the problem reduction Π̂ = REDUCEPROBLEM(Π, Ô) is
given by Π̂ = 〈P,A, T, Ô, Î, Ĝ〉, where Î (resp. Ĝ) is I
(resp. G) but with only properties over Ô.

Intuitively, an object set reduction abstracts away all as-
pects of the initial state and goal pertaining to the excluded
objects, and disallows any ground actions that involve these
objects. This can result in a dramatically simplified planning
problem, but may also result in an oversimplification to the
point where planning in the reduction results in an invalid
solution, or no solution at all. To distinguish such sets from
the useful ones we seek, we use the following definition.
Definition 2 (Sufficient object set). Given a planning prob-
lem Π = 〈P,A, T,O, I, G〉 and planner PLAN, a subset of
objects Ô ⊆ O is sufficient if π = PLAN(Π̂) is a solution to
Π, where Π̂ = REDUCEPROBLEM(Π, Ô).

In words, an object set is sufficient if planning in the corre-
sponding reduction results in a valid solution for the original
problem. An object set that omits crucial objects, like a key
needed to unlock a door or an obstacle that must be avoided,
will not be sufficient: planning will fail without the key, and
validation will fail without the obstacle. Trivially, the com-
plete set of objects O is always sufficient if the planning
problem is satisfiable and the planner is complete. However,
we would like to identify a small sufficient set that permits
faster planning. We therefore aim to learn a model that pre-
dicts such a set for a given initial state and goal.



Scoring Object Importance Individually
We wish to learn a model that allows us to identify a small

sufficient subset of objects given an initial state, goal, and
complete set of objects. There are three basic requirements
for such a model. First, since our ultimate objective is to
improve planning time, the model should be fast to query.
Second, since we want to optimize the model from a modest
number of training problems, the model should permit data-
efficient learning. Finally, since we want to maintain com-
pleteness when the original planner is complete, the model
should allow for some recourse when the first subset it pre-
dicts does not result in a valid solution.

These requirements preclude models that directly predict
a subset of objects. Such models offer no obvious recourse
when the predicted subset turns out to be insufficient. More-
over, models that reason about sets of objects are, in general,
likely to require vast amounts of training data and may re-
quire exorbitant time during inference.

We instead choose to learn a model f : O×S×G → (0, 1]
that scores objects individually. The output of the model
f(o, I,G) can be interpreted as the probability that the ob-
ject o will be included in a small sufficient set for the plan-
ning problem 〈P,A, T,O, I, G〉. We refer to this output
score as the importance of an object. To get a candidate suf-
ficient subset Ô from such a model, we can simply take all
objects with importance score above a threshold 0 < γ < 1.

For the graph neural network architecture we will present
in Section 5, this inference is highly efficient, requiring only
a single inference pass. This parameterization also affords
efficient learning, since as discussed at the end of this sec-
tion, the loss function decomposes as a sum over objects. As
an optimization, we always include in Ô all objects named
in the goal, since such objects must be in any sufficient set.

Another immediate advantage of predicting scores for ob-
jects individually is that there is natural recourse when the
first candidate set Ô does not succeed: simply lower the
threshold γ and retry. In practice, we lower the threshold ge-
ometrically (see Algorithm 1), guaranteeing completeness.

Lemma 1 (PLOI is complete). Given any object scorer f :
O × S × G → (0, 1], if the planner PLAN is complete, then
Algorithm 1 is complete.

Proof. Since the codomain of f excludes 0, there exists an
ε > 0 s.t. {o : o ∈ O, f(o, I,G) ≥ ε} = O. Furthermore,
0 < γ < 1, so there exists an iteration N s.t. γN < ε.
Therefore, in the worst case, we will return PLAN on the
original problem and return the result.

In predicting scores for objects individually, we have
made the set prediction problem tractable by restricting the
hypothesis class, but it is important to note that this restric-
tion makes it impossible to predict certain object subsets. For
example, in planning problems where a particular number of
“copies” of the same object are required, e.g., three eggs in
a recipe or five nails for assembly, individual object scoring
can only predict the same score for all copies. In practice, we
find that this limitation is sharply outweighed by the benefits
of efficient learning and inference.

In Section 5, we will present a graph neural network ar-
chitecture for the object scorer f that is well-suited for rela-
tional domains. Before that, however, we describe a general
methodology for learning f on the set of training problems.

Training with Supervised Learning
We now describe a general method for learning an ob-

ject scorer f given a set of training problems Πtrain =
{Π1,Π2, ...,ΠM}, where each Πi = 〈P,A, T,Oi, Ii, Gi〉.
The main idea is to cast the problem as supervised learning.
From each training problem Πi, we want to extract input-
output pairs {((o, Ii, Gi), y)}, where o ∈ Oi is each object
from the full set for the problem, and y ∈ {0, 1} is a binary
label indicating whether o should be predicted for inclusion
in the small sufficient set. The overall training dataset for su-
pervised learning, then, will contain an input-output pair for
every object, for each of the M training problems.

The y labels for the objects are not given, and moreover, it
can be challenging to exactly compute a minimal sufficient
object set, even in small problem instances. We propose a
simple approximate method for automatically deriving the
labels. Given a training problem Πi, we perform a greedy
search over object sets: starting with the full object set Oi,
we iteratively remove an individual object from the set, ac-
cepting the new set if it is sufficient, until no more individual
objects can be removed without violating sufficiency. All ob-
jects in the final sufficient set are labeled with y = 1, while
the remaining objects are labeled with y = 0. This proce-
dure, which requires planning several times per problem in-
stance with full or near-full object sets to check sufficiency,
takes advantage of the fact that the training problems are
much smaller and easier than the test problems.

It should be noted that the aforementioned greedy pro-
cedure is an approximation, in the sense that there may be
some smaller sufficient object set than the one returned.
To illustrate this point, consider a domain with a certain
number of widgets where the only parameterized action
is destroy(?widget). Suppose the goal is to be left
with a number of widgets that is divisible by 10, and that
the full object set itself has 10 widgets. The greedy proce-
dure will terminate after the first iteration, since no object
can be removed while maintaining sufficiency. However, the
empty set is actually sufficient because it induces the empty
plan, which trivially satisfies this goal. Despite such possi-
ble cases, this greedy procedure for deriving the training data
does well in practice to identify small sufficient object sets.

With a dataset for supervised learning in hand, we can
proceed in the standard way by defining a loss function and
optimizing model parameters. To permit data-efficient learn-
ing, we use a loss function that decomposes over objects:

L(Πtrain) =

M∑
i=1

∑
oj∈Oi

Lobj(yij , f(oj , Ii, Gi)),

where yij is the binary label for the jth object in the
ith training problem, and f(oj , Ii, Gi) ∈ (0, 1]. We use
a weighted binary cross-entropy loss for Lobj, where the
weight (10 in experiments) gives higher penalty to false neg-
atives than false positives, to account for class imbalance.



5 Object Importance Scorers as GNNs
We have established individual object importance scorers

f : O × S ×G→ (0, 1] as the model that we wish to learn.
We now turn to a specific model class that affords gradient-
based optimization, data-efficient learning, and generaliza-
tion to test problems with new and many more objects than
were seen during training. Graph neural networks (GNNs)
offer a flexible and general framework for learning functions
over graph-structured data (Kipf and Welling 2016). GNNs
employ a relational bias that is well-suited for our setting,
where we want to make predictions based on the relations
that objects are involved in, but we do not want to overfit
to the particular identity or number of objects in the train-
ing problems (Battaglia et al. 2018). Such a relational bias
is crucial for generalizing from training with few objects to
testing with many. Furthermore, GNNs can be used in do-
mains with continuous properties, unlike traditional induc-
tive logic programming methods (Muggleton 1991; Lavrac
and Dzeroski 1994; Camacho, King, and Srinivasan 2004).
We stress that other modeling choices are possible, such as
statistical relational learning methods (Koller et al. 2007), as
long as they are lifted, relational, efficiently learnable, and
able to handle continuous properties; we have chosen GNNs
here because they are convenient and well-supported.

The input to a GNN is a directed graph with nodes V and
edges E . Each node v ∈ V has a feature vector φnode(v) ∈
RDin

node , whereDin
node is the (common) dimensionality of these

node feature vectors. Each edge (v1, v2) ∈ E has a feature
vector φedge(v1, v2) ∈ RDin

edge , where Din
edge is the (common)

dimensionality of these edge feature vectors. The output of a
GNN is another graph with the same topology, but the node
and edge features are of different dimensionalities: Dout

node
andDout

edge respectively. Internally, the GNN passes messages
for K iterations from edges to sink nodes and from source
nodes to edges, where the messages are determined by fully
connected networks with weights shared across nodes and
edges. We use the standard Graph Network block (Battaglia
et al. 2018), but other choices are possible. Like other neural
networks, GNNs can be trained with gradient descent.

We now describe how object importance scoring can be
formulated as a GNN. The high-level idea is to associate
each object with a node, each unary property (including ob-
ject types) with an input node feature, each binary property
with an input edge feature, and each importance score with
an output node feature. See Figure 3 for an example.

Given a planning problem with object setO, we construct
input and output graphs where each node v ∈ V corresponds
to an object o ∈ O. In the output graph, there is a single
feature for each node; i.e.,Dout

node = 1. This feature represents
the importance score f(o, I,G) of each object o. The edges
are ignored in the output graph.

The input graph is an encoding of the initial state I and
goal G. Recall that the initial state I is defined by an as-
signment of all ground properties (P over O) to values,
and that all properties are unary (arity 1) or binary (arity
2). Each unary property, which includes object types, cor-
responds to one dimension of the input node feature vector
φnode(o). Each binary property corresponds to two dimen-

sions of the input edge feature vector φedge(o1, o2): one for
each of the two orderings of the objects (see Figure 3).

Recall that a goal G is characterized by an assignment of
some subset of ground properties to values. Unlike the ini-
tial state, not all ground properties must appear in the goal;
in practice, goals are typically very sparse relative to the
state. For each ground property, we must indicate whether
it appears in the goal, and if so, with what assignment. For
each unary property, we add two dimensions to the input
node feature vector φnode(o): one indicating the presence (1)
or absence (0) of the property, and the other indicating the
value, with a default of 0 if the property is absent. Similarly,
for each binary property, we add four dimensions to the in-
put edge feature vector φedge(o1, o2): two for the orderings
multiplied by two for presence and assignment.

For STRIPS-like domains where properties are predi-
cates, we make two small simplifications. First, to make the
graph computations more efficient, we sparsify the edges by
removing any edge whose features are all zeros. Second, in
the common case where goals do not involve negation, we
note that the presence/absence dimension will be equivalent
to the assignment dimension; we thus remove the redundant
dimension. Figure 3 makes use of these simplifications.

Given a test problem and trained GNN, we construct an
input graph, feed it to the GNN to get an output graph, and
read off the predicted importance scores for all objects. This
entire procedure needs only one inference pass (with K = 3
message passing iterations) to predict all object scores; it
takes just a few milliseconds in our experiments.

6 Experiments
In this section, we present empirical results for PLOI and

several baselines. We find that PLOI improves the speed
of planning significantly over all these baselines. See Ap-
pendix A for experimental details beyond those given here,
and see Appendix C for additional experiments and results.

Experimental Setup
Baselines. We consider several baselines in our experi-

ments, ranging from pure planning to state-of-the-art meth-
ods for learning to plan. All GNN baselines are trained with
supervised learning using the set of plans found by an opti-
mal planner on small training problems.
• Pure planning. Use the planner PLAN on the complete

test problems, with all the objects.
• Random object scoring. Use the incremental procedure

described in Section 4, but instead of using a trained
GNN to score the importance of each object, give each
object a uniformly random importance score between 0
and 1. This baseline can be understood as an ablation
that removes the GNN from our system.

• Neighbors. This is a simple heuristic approach that in-
crementally tries planning with all objects that are con-
nected by at most L steps in the graph of relations to any
object named in the goal, for L = 0, 1, 2, . . .. If a plan
has not been found even after all objects connected to a
goal object have been considered, we fall back to pure
planning for completeness.



Figure 3: Illustration of object importance scoring with GNNs. (Left to right) We consider the same planning problem example
as in Figure 2. A node is created for each of the four objects, with features determined by the unary properties in the initial state
and goal. An edge is created for each ordered pair of objects, with features determined by the binary properties, and with trivial
edges excluded. These nodes and edges constitute the input graph to a GNN, which performsK = 3 message passing iterations
before outputting another graph with the same topology. Each output node is associated with the object’s importance score.

Pure Plan PLOI (Ours) Rand Score Neighbors Policy ILP AG GNN AG
Domains Time Fail Time Fail Time Fail Time Fail Time Fail Time Fail Time Fail
Blocks 7.47 0.00 0.62 0.00 49.99 0.00 0.52 0.00 7.25 0.74 2.33 0.00 52.95 0.23
Logistics 8.55 0.00 6.44 0.00 42.05 0.00 15.40 0.00 – 1.00 – 1.00 49.31 0.81
Miconic 87.71 0.06 21.64 0.04 – 1.00 93.86 0.98 – 1.00 – 1.00 – 1.00
Ferry 12.64 0.00 7.52 0.00 43.79 0.10 39.66 0.00 34.78 0.91 33.77 0.00 – 1.00
Gripper 24.48 0.00 0.47 0.00 56.58 0.29 37.63 0.00 28.94 0.60 5.71 0.20 86.29 0.95
Hanoi 3.19 0.00 3.39 0.00 3.47 0.00 4.63 0.00 – 1.00 6.15 0.00 7.55 0.00
Exploding 11.52 0.30 0.81 0.30 44.96 0.32 1.08 0.29 10.18 0.89 4.69 0.19 48.53 0.38
Tireworld 24.58 0.01 4.38 0.08 44.09 0.29 47.13 0.00 30.36 0.10 – 1.00 63.03 0.66
PyBullet – 1.00 2.05 0.00 – 1.00 8.58 0.01 – – – – – –

Table 1: On test problems, failure rates within a 120-second timeout and planning times in seconds over successful runs. All
numbers report a mean across 10 random seeds, which randomizes both GNN training (if applicable) and testing. All times are
in seconds; bolded times are within two standard deviations of best. See Table 3 in Appendix C for all standard deviations. AG
= action grounding. Policy and AG baselines are not run for PyBullet because these methods cannot handle continuous actions.
Across all domains, PLOI is consistently best and usually at least two standard deviations better than all other methods.

• Reactive policy. Inspired by other works that learn
reactive, goal-conditioned policies for planning prob-
lems (Groshev et al. 2018; Rivlin, Hazan, and Karpas
2020), we modify our GNN architecture to predict a
ground action per timestep. The input remains the same,
but the output has two heads: one predicts a probability
over actionsA, and the other predicts, for every parame-
ter of that action, a probability over objects. At test time,
we compute all valid actions in each state and execute
the one with the highest probability under the policy.
This baseline does not use PLAN at test time.

• ILP action grounding. This baseline is the method pre-
sented by Gnad et al. (2019), described in Section 2, with
the best settings they report. We use the implementation
provided by the authors for both training and test. We
use the SVR model with round robin queue ordering,
and incremental grounding with increment 500.

• GNN action grounding. We also investigate using a
GNN in place of the inductive logic programming (ILP)
model used by the previous baseline (Gnad et al. 2019).
To implement this, we modify our GNN architecture to
take as input a ground action in addition to the state and
goal, and output the probability that this ground action
should be considered when planning.

As mentioned in Section 1, we also attempted to compare
to a state-of-the-art lifted planner (Corrêa et al. 2020), us-
ing the implementation provided by the authors. However,
we found that this planner was unable to solve any of our

test problems in any domain, although it was usually able to
solve the (much smaller) training problems.

Domains. We evaluate on 9 domains: 6 classical plan-
ning, 2 probabilistic planning, and 1 simulated robotic task
and motion planning. We chose several of the most stan-
dard classical and probabilistic domains from the Interna-
tional Planning Competition (IPC) (Bryce and Buffet 2008;
Vallati et al. 2015), but we procedurally generated problems
involving many more objects than is typical. In all domains,
we train on 40 problem instances and test on 10 much larger
ones. For interacting with IPC domains, we use the PDDL-
Gym library (Silver and Chitnis 2020), version 0.0.2. We
describe each domain in Appendix B. Here we report the to-
tal numbers of objects and the numbers of objects explicitly
named in the goal for test problems in each domain:

• Tower of Hanoi. 13-18 objects total (10-15 in goal).
• Blocks. 100-150 objects total (20-25 in goal).
• Gripper. 200-400 objects total (20-40 in goal).
• Miconic. 2200-3200 objects total (100 in goal).
• Ferry. 250-350 objects total (6 in goal).
• Logistics. 130-160 objects total (40 in goal).
• Exploding Blocks. Same as Blocks.
• Triangle Tireworld. 2601-2809 objects total (1 in goal).
• PyBullet robotic simulation (Coumans and Bai 2016).

1003 objects total (2 in goal). See Figure 4 for details.



Figure 4: Example problem from the PyBullet domain. Left:
The robot arm must move the target can (green) to the stove
(black) and then to the sink (brown) while avoiding other
cans (gray). Middle: GNN importance scores for this prob-
lem, scaled from blue (low importance) to red (high impor-
tance). We can see that cans surrounding the sink, stove, and
target have been assigned higher importance score, meaning
the GNN has reasoned about geometry. Right: The reduced
problem in which the robot plans. Only objects with impor-
tance score above some threshold remain in the scene.

Results and Discussion
All experiments are conducted over 10 random seeds. Ta-

ble 1 shows failure rates within a 120-second timeout and
average planning time on successful runs. Initial experimen-
tation found no significant difference in our results between
300-second and 120-second timeouts. Across all domains,
PLOI consistently plans much faster than all the other meth-
ods. In some domains, such as Gripper, PLOI is faster than
pure planning by two orders of magnitude. In the case of
Hanoi, where all objects are necessary, we see that PLOI is
comparable to pure planning, which confirms the desirable
property that PLOI reduces to pure planning with little over-
head in problems where all objects are required.

Comparing PLOI with the random object scoring base-
line, we see that PLOI performs much better in all domains
other than Hanoi. This comparison suggests that the GNN
is crucial for the efficient planning that PLOI attains. To fur-
ther analyze the impact of the GNN, we plot the number of
iterations (N in Algorithm 1) that are needed until the in-
cremental planning loop finds a solution, for both PLOI and
random object scoring (Figure 5). The dramatic difference
between the two methods confirms that the GNN has learned
a very meaningful bias, allowing a sufficient object set to be
consistently found in less than 5 iterations, and often just 1.

The key difference between PLOI and the action ground-
ing (AG) baselines is that PLOI predicts which objects would
be sufficient for a planning problem, while the AG baselines
predict which ground actions would be sufficient for a plan-
ning problem. Empirically, PLOI performs better than all the
AG baselines, due to the fact that PLOI has comparatively lit-
tle overhead, while the AG baselines spend significant time
during inference on trying to score all the possible ground
actions, of which there are significantly more than the num-
ber of objects. Another benefit of PLOI is that it uses PLAN
as a black box, whereas the AG baselines must modify the
internals of PLAN, e.g. by changing the set of ground actions
instantiated during translation or followed during search.

The neighbors baseline performs well in some domains,
but not in others; it performs particularly poorly in domains
where the agent must consider an object that does not share
a relation with some other important one, e.g. a ferry in the

Figure 5: Number of iterations (N in Algorithm 1) needed
until incremental planning finds a solution, for both PLOI
and random object scoring. Results are averaged over 10
seeds, with standard deviations shown as vertical lines. Mi-
conic and PyBullet are not included because random object
scoring never succeeded in this domain. We can see that the
GNN has learned a meaningful bias, allowing a sufficient
object set to be consistently found in fewer than 5 iterations.

Ferry domain. Looking now at the policy baseline, we see
that it is generally quite slow. This is because even though
the policy baseline does not use PLAN, it takes time to com-
pute all valid actions and query the policy GNN to find the
most probable one on every timestep; by contrast, PLOI only
performs inference once, on the first timestep. Moreover, the
policy has a high failure rate relative to the planning base-
lines, since there is no recourse when it does not succeed.

Finally, the results in the continuous PyBullet domain
suggest that PLOI is able to yield meaningful improve-
ments over an off-the-shelf task and motion planning sys-
tem. Learning in the hybrid state and action spaces of task
and motion planning domains is extremely challenging in
general; reactive policy learning is typically unable to make
meaningful headway in these domains. Moreover, it is not
possible to apply the action grounding approach due to the
infinite number of ground actions (e.g., poses for grasping a
can). PLOI works well here because it uses a planner in con-
junction with making predictions at the level of the (discrete)
object set, not the (continuous) ground action space.

7 Conclusion
We have introduced PLOI, a simple, powerful, and gen-

eral mechanism for planning in large problem instances con-
taining many objects. Empirically, we showed that PLOI per-
forms well across classical planning, probabilistic planning,
and robotic task and motion planning. As PLOI makes use
of a neural learner to inform black-box symbolic planners,
we view this work as a step toward the greater goal of in-
tegrated neuro-symbolic artificial intelligence (Mao et al.
2019; Parisotto et al. 2016; Alshahrani et al. 2017).

An immediate direction for future work would be to in-
vestigate the empirical impact of using a GNN as the impor-
tance scorer, versus techniques in statistical relational learn-
ing (Koller et al. 2007; Qu, Bengio, and Tang 2019). Another
direction would be to study how to apply PLOI to open do-
mains, where the agent does not know in advance the set
of objects that are in a problem instance. Addressing this
kind of future direction can help learning-to-plan techniques
like PLOI fully realize their overarching aim of solving large-
scale, real-world planning problems.
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A Experimental Details
Planning details. We use Fast Downward (Helmert 2006)

in the LAMA-first mode as the base classical plan-
ner for test time in all experiments. To gather training
data with an optimal planner, we use Fast Downward in
seq-opt-lmcut mode. For planning in probabilistic do-
mains, we use single-outcome determinization and replan-
ning (Yoon, Fern, and Givan 2007). For TAMP in the Py-
Bullet experiment, we use PDDLStream (Garrett, Lozano-
Pérez, and Kaelbling 2020) in focused mode.

Hardware details. All experiments were performed on
Ubuntu 18.04 using four cores of an Intel Xeon Gold 6248
processor, with 10GB RAM per core.

PLOI details. We use γ = 0.9 for all experiments.
GNN details. GNNs are implemented in PyTorch, version

1.5.0. All GNNs node and edge modules are fully connected
neural networks with one hidden layer of dimension 16,
ReLU activations, and layer normalization (Ba, Kiros, and
Hinton 2016). Message passing is performed forK = 3 iter-
ations. Training uses the Adam optimizer with learning rate
0.001 for 1000 epochs. The batch size is 16. Preliminary ex-
periments with `2 regularization, dropout, and hyperparam-
eter search yielded no consistent improvements for any of
the methods.

B Domain Descriptions
We evaluate on 9 domains: 6 classical planning, 2 prob-

abilistic planning, and 1 simulated robotic task and motion
planning. The classical and probabilistic domains are from
the International Planning Competition (IPC) (Bryce and
Buffet 2008; Vallati et al. 2015).

• Tower of Hanoi. The classic Tower of Hanoi domain, in
which disks must be moved among three pegs. All ob-
jects are always necessary to consider in this domain; we
have included this domain to show that PLOI does not
have much overhead on top of pure planning in this situ-
ation. We train on problems containing 4-9 disks and test
on problems containing 10-15 disks. The plan lengths for
training (test) problems range from 1-63 (511-8191).

• Blocks. Problems involve blocks in small piles on a ta-
ble, and the goal is to configure a particular small subset
of the blocks into a tower. We train on problems contain-
ing 15-32 blocks and test on problems containing 100-150
blocks. Test goals involve 20-25 blocks. The plan lengths
for training (test) problems range from 4-10 (26-64).

• Gripper. Problems involve one robot that can pick and
place balls and move to different rooms. A goal is an as-
signment of a subset of the balls to rooms. We train on
problems containing 36-52 objects and test on problems
containing 100-200 objects. Test goals involve placing 10-
20 balls in random rooms. The plan lengths for training
(test) problems range from 7-19 (27-107).

• Miconic. Passengers in buildings with elevators are trying
to reach particular floors. We train on problems involving
33-63 objects. We test on problems with 20-30 floors, 2
passengers per building, and 100 buildings, for a total of
over 2000 objects. Goals involve moving one passenger

per building to their desired floor. The plan lengths for
training (test) problems range from 11-12 (894-917).

• Ferry. A ferry transports cars to various locations. We
train on problems with 13-21 objects and test on prob-
lems with 250-350 objects. Goals involve moving 3 cars
to random locations. The plan lengths for training (test)
problems range from 7-12 (14-17).

• Logistics. Trucks and airplanes are used to transport
crates to cities. We train on problems with 13-40 objects.
Test problems have around 50 airplanes, 20 cities, 20
trucks, 20-50 locations, and 20 crates. Goals involve mov-
ing around 20 crates to random cities. The plan lengths for
training (test) problems range from 5-32 (66-203).

• Exploding Blocks. A probabilistic IPC domain, where
whenever the agent interacts with a block, there is a
chance that the block or the table are irreversibly de-
stroyed; no policy can succeed all the time in this domain.
Problem sizes are the same as in Blocks.

• Triangle Tireworld. A probabilistic IPC domain, con-
taining an agent that must navigate through cities, and has
a chance of getting a flat tire on each timestep. The agent
can only change its tire at certain cities that have spare
tires. It is always possible to reach the goal city by sim-
ply avoiding cities that do not have spare tires. We test on
worlds with side length around 50.

• PyBullet robotic simulation (Coumans and Bai 2016).
In this domain with continuous object properties, a fixed
robot arm mounted on the center of a table must inter-
act with a particular can on the table while avoiding all
other irrelevant cans. See Figure 4 for details and a visu-
alization. To encode this domain in our GNN, we treat the
continuous object poses as node features. Test problems
have around 1000 irrelevant cans on the table. The goal
always involves manipulating a single can.

C Additional Experiments
Here we report additional experiments and results.

Effect of Message Passing Iterations (K) We used K =
3 message passing iterations for all graph neural networks.
To better understand the impact of this hyperparameter on
our main results, we reran PLOI on Blocks, varying K from
1 to 5. As seen in Figure 6, results are robust for 2 ≤ K ≤ 5,
but performance drops off heavily for K = 1, suggesting
that some propagation through the GNN matters. In other
domains, we would similarly expect K = 1 to be insuffi-
cient, but we may not always expect K = 2 to suffice. Gen-
erally, setting K appropriately involves a trade-off: too low
values may prevent the model from fitting the data, while
too large values may slow computation and risk overfitting.
A hyperparameter search increasing from K = 1 should do
well to identify an appropriate value for any domain.

Effect of Number of Training Problems We used < 50
training problems in all domains, with 40 used in Blocks. To
better understand the impact of the number of training prob-
lems on our main results, we reran PLOI on Blocks, varying
the number of training problems between 2 and 40. As seen



PLOI (Ours) Policy ILP AG GNN AG
Domains #T Data GNN Total Data GNN Total Data GNN Total Data GNN Total
Blocks 40 14.8 57 647 0.555 83 88.55 – – 317.26 4.8 2990 3182
Logistics 40 40.7 115 1742 12.5 230 355 – – 954.75 14.08 77300 77863
Miconic 40 39.3 568 2140 0.551 2820 2825.5 – – 4906.5 0.52 120100 120120
Ferry 40 10.2 230 637 0.445 452 456.45 – – 894.60 0.37 15800 15814
Gripper 40 33.9 130 1486 0.858 300 308.58 – – 625.34 1.14 15270 15315
Hanoi 6 1.1 53 59.63 0.34 231 233.05 – – 22.59 0.35 4750 4752.1

Table 2: Training times for learning methods. For each learning method and for each domain, we report the total training time
(“Total” columns, seconds). For the GNN-based methods, we further report the breakdown between the GNN training time
(“GNN” columns, seconds) and the time required to create the training data per problem (“Data” columns, seconds), with the
total number of training problems per domain reported on the left (“#T”).

Pure Plan PLOI (Ours) Rand Score Neighbors Policy ILP AG GNN AG
Domains Time Fail Time Fail Time Fail Time Fail Time Fail Time Fail Time Fail
Blocks 0.07 0.00 0.07 0.00 15.80 0.00 0.06 0.00 0.77 0.35 0.04 0.00 27.68 0.32
Logistics 0.05 0.00 5.95 0.00 2.68 0.00 0.53 0.00 – 0.00 – 0.00 14.45 0.17
Miconic 2.94 0.05 4.32 0.14 – 0.00 – 0.06 – 0.00 – 0.00 – 0.00
Ferry 0.03 0.00 4.75 0.00 11.05 0.06 5.34 0.00 – 0.28 1.82 0.00 – 0.00
Gripper 0.17 0.00 0.03 0.00 15.67 0.21 5.78 0.00 2.73 0.37 0.12 0.00 22.69 0.10
Hanoi 0.17 0.00 0.39 0.00 0.32 0.00 0.41 0.00 – 0.00 0.19 0.00 0.19 0.00
Exploding 2.97 0.14 0.12 0.15 18.53 0.17 0.12 0.11 2.37 0.16 1.05 0.07 29.10 0.13
Tireworld 9.11 0.04 1.23 0.22 12.06 0.08 4.98 0.00 13.21 0.21 – 0.00 15.36 0.21
PyBullet 0.00 0.00 0.11 0.00 0.00 0.00 0.21 0.03 – – – – – –

Table 3: Standard deviations for main results. See Table 1 in the main text for means and experimental details.

Figure 6: Effect of message passing iterations (K) on the
performance of PLOI in Blocks. Results are averaged over
10 seeds, with standard deviations shown as shaded areas.

in Figure 7, performance peaks very quickly, starting at 3
and remaining robust for > 3. We would not necessarily ex-
pect so few examples to suffice for the other domains.

Training Times Our main results compare the time re-
quired at test time for PLOI and baselines to plan. In Table 2,
we report the time required by PLOI and the other learning
methods at training time, with a breakdown between train-
ing dataset generation and GNN training where applicable.
Our findings are: (1) data generation (predominantly data la-

Figure 7: Effect of number of training examples on the per-
formance of PLOI in Blocks. Results are averaged over 10
seeds, with standard deviations shown as shaded areas.

belling) takes from 15 seconds (Blocks) to 90 seconds (Tire-
world) per problem; (2) training the GNN for PLOI is much
faster than for Policy or GNN AG, averaging 3 min for PLOI,
5 min for Policy, and 500 min for GNN AG; (3) training
speed for PLOI is on par with that for ILP AG (Gnad et al.
2019). The difference in (2) is because PLOI needs much less
data than Policy or GNN AG, since PLOI does not operate on
actions and is only run on the initial state.


