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Abstract— Robotic planning problems in hybrid state and
action spaces can be solved by integrated task and motion
planners (TAMP) that handle the complex interaction between
motion-level decisions and task-level plan feasibility. TAMP
approaches rely on domain-specific symbolic operators to guide
the task-level search, making planning efficient. In this work,
we formalize and study the problem of operator learning for
TAMP. Central to this study is the view that operators define a
lossy abstraction of the transition model of a domain. We then
propose a bottom-up relational learning method for operator
learning and show how the learned operators can be used for
planning in a TAMP system. Experimentally, we provide results
in three domains, including long-horizon robotic planning tasks.
We find our approach to substantially outperform several
baselines, including three graph neural network-based model-
free approaches from the recent literature. Video: https://
youtu.be/iVfpX9BpBRo. Code: https://git.io/JCT0g

I. INTRODUCTION

Robotic planning problems are often formalized as hybrid
optimization problems, requiring the agent to reason about
both discrete and continuous choices (e.g., Which object
should I grasp? and How should I grasp it?) [1]. A central
difficulty is the complex interaction between low-level geo-
metric choices and high-level plan feasibility. For example,
how an object is grasped affects whether or not it can later
be placed into a shelf (Figure 1). Task and motion planning
(TAMP) combines insights from AI planning and motion
planning to address these challenges [1], [2], [3], [4], [5],
[6]. TAMP uses symbolic planning operators to search over
symbolic plans, biasing the search over motions. Operators
are hand-specified in all popular TAMP systems [7], requiring
expert input for each domain. Instead, we aim to develop a
domain-independent operator learning algorithm for TAMP.

Symbolic operators are useful for TAMP in three key ways.
First, operators let us efficiently determine that many plans
have zero probability of reaching a goal, regardless of the
choice of continuous action parameters, allowing us to ignore
such plans in the search. Second, operators permit a bilevel
optimization approach, with symbolic planning providing a
dense sequence of subgoals for continuous optimization [1],
[5]. Third, explicit PDDL-style operators [8] allow us to au-
tomatically derive AI planning heuristics, which dramatically
speed up the search over symbolic plans.

In this work, we formalize and study the problem of
learning operators for TAMP from data, using a bottom-
up relational learning method. We consider a setting with
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Fig. 1: Snapshots from the “Painting” domain (Section VI). Left:
An object that is grasped from the top can be placed into a small
open-faced box. Right: A side grasp is required to place an object
into a shelf with a ceiling. The chosen continuous grasp argument
for the Pick action therefore later influences the effects of placing.

a deterministic low-level environment simulator, a set of
hybrid controllers with associated samplers for the contin-
uous parameters, an object-oriented continuous state, and a
set of predicates that collectively define a lossy abstraction
of the low-level state. In this setting, planning is possible
without operators via breadth-first search over sequences of
controllers and a schedule for calling the associated samplers
(Section VI, Baseline 5). However, we find that making use
of the operators within TAMP provides enormous benefits.

Our approach continues a line of recent work that seeks
to exploit properties of task distributions to make TAMP
more efficient. In particular, our approach can be understood
as a model-based method for learning guidance in hybrid
planning problems: the operators define an abstract transition
model that provides guidance. Recent literature on learning
for TAMP considers various model-free counterparts. Kim
and Shimanuki [9] learn an “abstract Q-function” that implic-
itly defines a goal-conditioned policy over symbolic actions,
while Driess et al. [10] learn a recurrent model that directly
produces symbolic plans. In our experiments, we consider
three model-free baselines inspired by these methods.

In this paper, we propose the Learning Operators For
TAMP (LOFT) algorithm, and make the following contribu-
tions: (1) we formalize the problem of operator learning in
TAMP; (2) we propose a relational operator learning method,
and show how to use the learned operators to quickly solve
TAMP problems; (3) we provide experimental results in three
domains, including long-horizon robotic planning tasks, that
show the strength of our approach over several baselines.



II. RELATED WORK

A. Task and Motion Planning (TAMP)

The field of TAMP emerged from the combination of AI
methods for task planning [11] and robotic methods for
motion planning. TAMP methods are focused on solving
multimodal, continuous robotic planning problems in highly
unstructured environments [12], [13]; see Garrett et al. [1]
for a recent survey. Approaches to TAMP can be broadly cat-
egorized based on how the treatment of symbolic reasoning
interacts with the treatment of continuous variables during
planning. Some approaches to TAMP involve optimization
over trajectories [3], [6], while others use sampling-based
procedures [4], [5], [14]. In all cases, popular TAMP systems
rely on hand-specified planning models (e.g., PDDL opera-
tors), a limitation we aim to address in this paper.

B. Learning for Task and Motion Planning

Learning techniques have been integrated into many as-
pects of TAMP systems, from learning samplers for contin-
uous values [15], [16], [17], [18] to learning guidance for
symbolic planning [9], [10], [16]. The latter is our focus in
this paper; we assume samplers are given, and we aim to
learn operators that enable symbolic planning in TAMP.

Most relevant to our work are efforts to learn model-free
search guidance for symbolic planning [9], [10]. A challenge
in applying model-free techniques in the TAMP setting is that
there is no obvious way to “execute” an action in the space
of symbolic transitions. Kim and Shimanuki [9] address
this challenge by sampling low-level transitions at each step
during symbolic planning; Driess et al. [10] instead learn a
recurrent “Q-function” that takes in a sequence of actions
and an initial state. In our experiments, we consider three
baselines inspired by these model-free approaches.

C. Learning Symbolic Operators

Learning symbolic planning operators has a very long
history in the planning literature; see Arora et al. [19]
for a comprehensive review. While it has been studied for
decades [20], [21], [22], [23], [24], operator learning has not
been studied in the TAMP setting, where the learned operators
must be understood as a lossy and abstract description
of a low-level, geometric planning problem. In TAMP, the
operators are a means to an end, not the entire story: the
operators enable symbolic planning, which in turn produces
candidate symbolic plans for a low-level optimizer. The
operators in TAMP, therefore, are useful in that they give
guidance to the overall planning procedure.

III. PROBLEM SETTING

We consider a standard TAMP setting with low-level states
x ∈ X , where x is a mapping from a set of typed objects
O to attributes and their corresponding values. The attributes
are fixed for each object type, and all values are real-valued
vectors. For example, x may include the continuous 6D pose
of each object in the scene. We are given a set of hybrid
controllers Π = {π1, . . . , πk}, each parameterized by zero or
more discrete objects o = (o1, . . . , om) with oi ∈ O, and by

a real-valued continuous vector parameter θ. An action a is
an instantiation of a controller with arguments, both discrete
and continuous. For example, the action Pick(obj1, θ) is
a call to a controller Pick ∈ Π that will attempt to pick the
object o1 ← obj1 using grasp arguments θ ← θ.

Each controller is associated with a given sampler for the
continuous parameters θ, conditioned on the low-level state
and discrete arguments. Samplers produce values that satisfy
implicit constraints specific to their controller; for example,
the sampler for the Pick controller produces feasible grasps
θ based on the state x and the discrete argument o1.1

We are given a low-level simulator f defining the envi-
ronment dynamics. f maps a low-level state and an action to
a next low-level state, denoted xt+1 = f(xt, at). We do not
assume any analytical knowledge of the transition model.

We assume access to a set of predicates P . Each predicate
p(o) ∈ P represents a named relation among one or more
objects in O. For example, On(y, z) encodes whether an
object y is on top of another object z. In this work, all
predicates are discrete: arguments are objects, and predicates
either hold or do not hold (cf. numeric fluents). A predicate
with variables as arguments is lifted; a predicate with objects
as arguments is ground. Each predicate is a classifier over
the low-level state x. Given a state x, we can compute the
set of all ground predicates that hold in the state, denoted
s = PARSE(x), where PARSE is a deterministic function. For
example, PARSE may use the geometric information in the
low-level state x to determine which objects are on other ob-
jects, adding On(y, z) to s if object y is on object z. We refer
to s as the symbolic state. The assumption that predicates are
provided is limiting but standard in the learning-for-TAMP
literature [9], [10], [15]. We emphasize that the predicates are
lossy, in the sense that transitions at the symbolic level can
be non-deterministic, even though the low-level simulator f
and PARSE function are deterministic [25].

We are given a set of planning problems {(O, x0, G)} to
solve. Here, O is an object set, x0 ∈ X is an initial low-level
state, and G is a goal. All problems share a simulator f ,
predicates P , and controllers Π. A goal G is a (conjunctive)
set of ground predicates over the object set O; we say
G is achieved in state x if G ⊆ PARSE(x). A solution
to a planning problem is a plan: a sequence of actions
(a0, . . . , aT−1) where xt+1 = f(xt, at) and xT achieves G.

Since we are interested in learning-based approaches, we
suppose that we are given a dataset D, collected offline, of
low-level transitions (xi, ai, xi+1, Gi) generated from plan-
ning in (typically smaller) problems from the same family.
See Section VI for details on how we collect D in practice.

IV. TASK AND MOTION PLANNING WITH OPERATORS

Most TAMP systems rely on hand-defined, domain-specific
symbolic operators to guide planning. In this section, we
define operators and describe how they are used for planning
in “search-then-sample” TAMP methods [1].

1Not all TAMP systems use samplers; some are optimization-based [6].
Our approach is not limited to sampling-based TAMP systems, but we find
it convenient for exposition to describe our problem setting this way.



A symbolic operator is composed of a controller, param-
eters, a precondition set, and an effect set.2 The parameters
are typed placeholders for objects that are involved in the
discrete controller parameters, the precondition set, or the
effect set. Preconditions are lifted predicates over the pa-
rameters that describe what must hold for the operator to be
applicable. Effects are (possibly negated) lifted predicates
over the parameters that describe how the symbolic state
changes as a result of applying this operator (executing this
controller). The operator can be grounded by assigning the
parameters to objects, making substitutions in the parameters,
preconditions, and effects accordingly. In this paper, oper-
ators do not model the influence of the continuous action
parameters, and therefore make predictions based on the
discrete controller parameters and symbolic state alone. See
the third panel of Figure 2 for an example operator (Pick0).

To understand how operators can be used to guide TAMP,
we turn to the following definitions.

Definition 1 (Action template): An action template is a
controller π(o, θ) and an assignment of the controller’s
discrete parameters o ← o, with the continuous parameters
left unassigned. We denote the action template as π(o, ·).

An action template can be understood as an action with
a “hole” for the continuous arguments of the controller. For
example, Pick(obj1, ·) is an action template with a hole
left for the continuous grasp arguments.

Definition 2 (Plan skeleton): A plan skeleton is a se-
quence of action templates (π1(o1, ·), . . . , π`(o`, ·)).

A plan skeleton can be refined into a plan by assigning
values to all of the continuous parameters in the controller:
(π1(o1, θ1), . . . , π`(o`, θ`)) = (a1, . . . , a`). The main role of
operators is to efficiently generate plan skeletons that can be
refined into a solution plan. Given a goal G and an initial
low-level state x0 with symbolic state s0 = PARSE(x0),
we can use the operators to search for a plan skeleton that
achieves G symbolically, before needing to consider any
continuous action arguments. Importantly, though, a plan
skeleton that achieves G symbolically has no guarantee of
being refinable into a plan that achieves G in the envi-
ronment. This complication is due to the lossiness of the
symbolic abstraction induced by the predicates.

To address this complication, search-then-sample TAMP
methods perform a bilevel search, alternating between high-
level symbolic planning to search for plan skeletons and low-
level optimization to search for continuous arguments that
turn a plan skeleton into a valid plan [2], [3], [5].

In this work, for high-level planning, we use A∗ search.
Importantly, our operators are compatible with PDDL rep-
resentations [8], meaning we can use classical, domain-
independent planning heuristics in this search (hAdd [11] in
all experiments). For low-level optimization, we conduct a
backtracking search over continuous parameter assignments

2Each controller can be associated with multiple operators. For example,
in the Painting domain shown in Figure 1, a generic Place controller would
have two operators, one for placing into the shelf (with HoldingSide in
the preconditions and InShelf in the effects) and another for placing into
the box (with HoldingTop and InBox respectively).

to attempt to turn a plan skeleton into a plan. Recall that
each step in the plan skeleton is an action template, and
that each controller is associated with a sampler. For each
action template, we invoke the sampler to produce continuous
arguments, which in turn leads to a complete action. The
backtracking is conducted over calls to the sampler for each
step of the plan skeleton. This search terminates with success
if following the action sequence in the simulator f results in
a low-level state that achieves the goal. We allow a maximum
of Nsamples calls to each step’s sampler before backtracking.
If search is exhausted, control is returned to the high-level
A∗ search to produce a new candidate plan skeleton.

A major benefit of having symbolic operators is that
they allow us to prune the backtracking search by only
considering plan prefixes that induce trajectories in agree-
ment with the expected symbolic trajectory. For example,
consider a plan prefix (a0, a1, a2), which induces the trajec-
tory (x0, x1, x2, x3). We can call PARSE on each state to
produce the symbolic state sequence (s0, s1, s2, s3); if the
transition s2 → s3 is not possible under the operators, then
the continuous arguments of a2 should be resampled.

The TAMP algorithm described above was selected due to
its relative simplicity and strong empirical performance [5].
Note, however, that it is not probabilistically complete; it is
possible that the low-level optimization cannot refine a valid
skeleton within the Nsamples allotment, and since there is no
ability to revisit a skeleton once low-level optimization fails,
the algorithm may miss a solution even if one exists.

V. LEARNING SYMBOLIC OPERATORS FOR TAMP

In this section, we describe our main approach: Learning
Operators For TAMP, or LOFT for short. We begin in Sec-
tion V-A with the observation that we can learn probabilistic
operators to account for the inevitable lossiness induced by
the symbolic abstraction. In Section V-B, we describe an
efficient algorithm for learning these probabilistic operators
from transition data. Finally, in Section V-C we demonstrate
how to use the learned probabilistic operators for TAMP. See
Figure 2 for an example of the full pipeline.

A. Probabilistic Operators as Symbolic Transition Models

From a planning perspective, operators can be seen as a
substrate for guiding search. An alternative perspective that
is more amenable to learning is that the operators comprise
a symbolic transition model, describing the distribution of
next symbolic states st+1 given a current symbolic state
st and action at: P (st+1 | st, at).3 This probabilistic
framing follows from the fact that no deterministic function
could accurately model these symbolic transitions, given the
lossiness of the abstraction induced by PARSE.

To learn operators that comprise a probabilistic transition
model, we consider operators with probabilistic effects, like
those found in PPDDL [26]. These probabilistic operators

3In general, the nondeterminism in the symbolic transitions may depend
on the policy for generating the transitions and the low-level dynamics. For
our purposes, the precise semantics are unimportant as the probabilities are
only used to filter out rare outcomes, and are then discarded (Section V-C).



Fig. 2: An example of the complete pipeline. We learn probabilistic operators on transition data, then determinize them. The operators
are used to generate high-level plan skeletons for new TAMP problem instances, providing guidance that makes planning more efficient.

Algorithm PROBABILISTIC OPERATOR LEARNING
// Transition data for a single controller

Input: Dπ = {(si, ai, si+1) : ai = π(·, ·)}
// Cluster data by lifted effect sets

clusters← CLUSTERLIFTEDEFFECTS(Dπ)
// Compute and save precondition sets

effectsToPreconditionSets← {}
for D(π,eff) ∈ clusters do

// Learn one or more precondition sets

effectsToPreconditionSets[eff]←
LEARNPRECONDITIONSETS(D(π,eff),Dπ)

// Instantiate operators

operators← ∅
for each seen precondition set pre do

// Effects with these preconditions

effs← {eff : pre ∈
effectsToPreconditionSets[eff]}

operator ← MAKEOPERATOR(π, pre, effs)
operators.add(operator)

// Estimate effect probabilities

for operator ∈ operators do
ESTIMATEPARAMETERS(operator,Dπ)

return operators
Algorithm 1: Algorithm for learning probabilistic operators
for a given controller π. See Section V-B for details.

are equivalent to the deterministic operators described in
Section IV, except that they contain a categorical distribution
over effect sets rather than a single effect set. See the second
panel in Figure 2 for an example (Pick).

B. Learning Probabilistic Operators

We now describe a bottom-up relational method for learn-
ing probabilistic operators in the TAMP setting. Recall that
we are given a dataset D = {(xi, ai, xi+1, Gi)} of low-
level transitions. (The goals are irrelevant for learning a
transition model, but they are included in D because they
prove useful for baselines in our experiments.) These data
can be converted into symbolic transitions {(si, ai, si+1)}
by calling the PARSE function on the low-level states. We
now have samples from the distribution P (st+1 | st, at)

that we wish to learn. The data can be further partitioned
by controller. Let Dπ denote the dataset of transitions for
controller π ∈ Π, e.g., DPick = {(si, ai, si+1) ∈ D : ai =
Pick(·, ·)}. With these datasets in hand, the algorithm for
learning probabilistic operators proceeds in three steps: (1)
lifted effect clustering, (2) precondition learning, and (3)
parameter estimation. See Algorithm 1 for pseudocode.

Lifted Effect Clustering. We begin by clustering the tran-
sitions in Dπ according to lifted effects. For each transition
(si, ai, si+1), we compute ground effects using two set
differences: si+1 − si are positive effects, and si − si+1 are
negative effects. We then cluster pairs of transitions together
if their effects can be unified, that is, if there exists a bijective
mapping between the objects in the two transitions such that
the effects are equivalent up to this mapping. This unification
can be checked in time linear in the sizes of the effect sets.
Each of the resulting clusters is labelled with the lifted effect
set, where the objects in the effects from any arbitrary one
of the constituent transitions are replaced with placeholders.
Algorithm 1 uses the notation D(π,eff) to denote the dataset
for controller π and lifted effect set “eff.”

Precondition Learning. Next, we learn one or more sets
of preconditions for each lifted effect cluster. We perform
two levels of search: an outer greedy search over sets of
preconditions, and an inner best-first search over predicates
to include in each set. The outer search is initialized to an
empty set and calls the inner search to generate successors
one at a time, accepting all successors until terminating after
a maximum number of steps or failure of the inner search.

The inner search for a single precondition set is ini-
tialized by lifting each previous state si for all transitions
(si, ai, si+1) in the effect cluster; each object in si is replaced
with a placeholder variable, and the resulting predicate set
represents a (likely over-specialized) candidate precondition.
Successors in this inner search are generated by removing
each possible precondition from the current candidate set.

A transition is considered explained by a precondition
set if there exists some substitution of the precondition
variables to the objects in the transition so that the effects
are equivalent under the substitution to that of the current
effect cluster. A precondition set is desirable if it leads to
many “true positive” transitions — ones that are explained



by this precondition set, but not by any previously selected
ones. A precondition set is undesirable if it leads to many
“false positive” transitions, where the preconditions hold
under some variable substitution, but the effects do not match
the cluster. We therefore assign each candidate set a weighted
sum score (higher is better): β × (# true positives) − (#
false positives), where β is a hyperparameter (β = 10 in all
experiments). The inner search terminates after a maximum
number of iterations or when no improving successor can be
found. The highest-scoring candidate is returned.

Precondition learning is the computationally hard step of
the overall algorithm; the outer and inner searches are ap-
proximate methods for identifying the best sets of precondi-
tions under the score function. The computational complexity
is bounded by the number of iterations in the inner search
(100 in all experiments), the amount of data, the number of
controllers, and the number of predicates in the largest state.

Parameter Estimation. After precondition learning, we
have one or more sets of preconditions for each set of lifted
effects, for each controller. Looking between lifted effects, it
will often be the case that the same precondition set (up
to unification) appears multiple times. In the example of
Figure 2 for Pick, the precondition set {HandEmpty(),
OnTable(o1)} may be associated with two sets of effects,
one that includes HoldingSide(o1) and another that in-
cludes HoldingTop(o1). We combine effects with match-
ing preconditions to initialize the probabilistic operators.

All that remains is to estimate the probabilities associated
with each operator’s effect sets. This parameter estimation
problem reduces to standard categorical distribution learning;
for each pair of lifted preconditions and effects, we count the
number of transitions for which the lifted preconditions hold
and the number for which the effects follow, and divide the
latter by the former. This results in a final set of probabilistic
operators, as shown in the second panel of Figure 2.4

In terms of taxonomy, our proposed algorithm can be
seen as a bottom-up inductive logic programming (ILP)
algorithm, although it falls outside of the typical problem
setting considered in ILP [27]. In the operator learning
literature [19], a close point of comparison is the algorithm
of Zettlemoyer, Pasula, and Kaelbling [20], who learn “noisy
deictic rules” that can be converted into probabilistic opera-
tors. We compare our method against learning noisy deictic
rules (LNDR) in experiments, finding ours to be faster and
more effective for our domains. This difference stems from
our decoupling of effect clustering, precondition learning,
and parameter estimation, which are all interleaved in LNDR.

C. Planning with Learned Operators

We now describe how the learned probabilistic opera-
tors can be used for TAMP. In Section IV, we described
how deterministic operators can be used for solving TAMP

4These learned operators may not represent a proper probability dis-
tribution, since there is a possibility that one transition will be fit by
multiple preconditions; see [20] for further discussion. For our purposes,
the probabilities serve only to filter out low-probability effects on the way
to guiding planning (Section V-C), so this technicality can be ignored.

problems. A simple and effective approach for converting
probabilistic operators into deterministic ones is all-outcome
determinization [28], whereby one deterministic operator is
created for each effect set in each probabilistic operator, with
the corresponding preconditions and parameters (Figure 2,
third panel). Before determinizing, we filter out effects that
are highly unlikely by thresholding on a hyperparameter pmin.

In the limiting case where the dataset D is empty and we
were unable to learn any operators, planning reduces to sim-
ply invoking the backtracking search on every possible plan
skeleton, starting from length-1 sequences, then length-2, etc.
We use this strategy as a baseline (B5) in our experiments.
Since planning is still possible even without operators, it
is clear that the learned operators should be understood as
providing guidance for solving TAMP problems efficiently;
with more data, the guidance improves.

Our aim is not to innovate on TAMP, but rather to
demonstrate that the operators underpinning TAMP methods
can be learned from data. In addition to our main TAMP
algorithm, we also found preliminary success in using LOFT
with another popular TAMP system [14], but stayed with the
method described in Section IV due to speed advantages.

VI. EXPERIMENTS

A. Experimental Setup

Domains. We conduct experiments in three domains.
“Cover” is a relatively simple domain in which colored

blocks and targets with varying width reside along a 1-
dimensional line. The agent controls a gripper that can
pick and place blocks along this line, and the goal is
to completely cover each target with the block of the
same color. The agent can only pick and place within
fixed “allowed regions” along the line. Because the tar-
gets and blocks have certain widths, and because of the
allowed regions constraint, the agent must reason in ad-
vance about the future placement in order to decide how
to grasp a block. There are two object types (block
and target), and the predicates are Covers(?block,
?target), Holding(?block), and HandEmpty().
There are two controllers, Pick(?block, ?loc) and
Place(?targ, ?loc), where the second parameter of
each is a continuous location along the line. The samplers
for both actions choose a point uniformly from the allowed
regions. We evaluate the agent on 30 randomly generated
problems per seed, with average optimal plan length 3.

“Blocks” is a continuous adaptation of the classical
blocks world planning problem. A robot uses its gripper
to interact with blocks on a tabletop and must assemble
them into various towers. See Figure 3 for a snapshot.
All geometric reasoning, such as inverse kinematics and
collision checking, is implemented through PyBullet [29].
The predicates are On(?b1, ?b2), OnTable(?b),
Clear(?b), Holding(?b), and HandEmpty(). There
are three controllers, Pick(?b), Stack(?b), and
PutOnTable(?loc), where PutOnTable is parameter-
ized by a continuous value describing where on the table
to place the currently held block. This place location must



Fig. 3: Snapshots from the “Blocks” domain (left) and the “Painting” domain (right). See Section VI for details.

be chosen judiciously, because otherwise it could adversely
affect the feasibility of the remainder of a plan skeleton. The
sampler for the PutOnTable controller is naive, randomly
sampling a reachable location on the table while ignoring
obstacles. We evaluate the agent on 10 randomly generated
problems per seed, with average optimal plan length 8.

“Painting” is a challenging, long-horizon robotic planning
problem, in which a robot must place objects at target
positions located in either a shelf or a box. Before being
placed, objects must first be washed, dried, and painted
with a certain color. Objects can be randomly initialized
to start off clean or dry. To place into the shelf, the robot
must first side-grasp the object due to the shelf’s ceiling;
similarly with top-grasping for the box. This introduces a
dependency between the grasp parameter and the feasibility
of placing up to four timesteps later. See Figure 3 for a
snapshot, where the yellow object is in the box and the
purple objects are in the shelf. All geometric reasoning is
implemented through PyBullet [29]. There are 14 predicates:
OnTable, Holding, HoldingSide, HoldingTop,
InShelf, InBox, IsDirty, IsClean, IsDry,
IsWet, IsBlank, IsShelfColor, IsBoxColor, all
parameterized by a single ?obj, and HandEmpty(). There
are five controllers, Pick(?obj, ?base, ?grip),
Place(?base, ?grip), Wash(?obj, ?effort),
Dry(?obj, ?effort), and Paint(?color). Here,
?effort and ?color are continuous values in R, and
?base and ?grip are continuous values in R3 denoting
base and end effector positions that the controller should
attempt to go to before executing the pick or place. The
Pick sampler randomly returns a top grasp or a side grasp.
The Place sampler is bimodal: with probability 0.5, it
samples a random placement in the shelf; otherwise, it
samples a random placement in the box. As in Blocks,
the placement samplers are naive with respect to potential
collisions. The samplers for Wash and Dry are degenerate,
returning exactly the appropriate ?effort required to
wash or dry the object respectively. The Paint sampler
randomly returns the shelf color or the box color. We
evaluate the agent on 30 randomly generated problems per
seed, with average optimal plan length 31.

Methods Evaluated. We evaluate the following methods.

• LOFT: Our full approach.
• Baseline B0: We use LOFT but replace our Algorithm 1

for probabilistic operator learning with LNDR [20], a
popular greedy algorithm for learning noisy rules.

• Baseline B1: Inspired by Kim and Shimanuki [9], we
train a graph neural network (GNN) that represents a Q-
function for high-level search. The model takes as input
a symbolic state, an action template, and the goal, and
outputs a Q-value for that action template. To use the
model, we perform tree search as described in [9]: the
Q-function is used to select the best action template, and
we sample W (a width parameter) continuous values
for calling the simulator to produce successor states.
A major difference from their work is that we are not
doing online learning, so we perform fitted Q-iteration
with the given dataset D in order to train the GNN.

• Baseline B2: Same as B1, but the low-level state x is
also included in the input to the GNN.

• Baseline B3: Inspired by Driess et al. [10], we train
a recurrent GNN that predicts an entire plan skeleton
conditioned only on the initial low-level state, initial
symbolic state, and goal. This recurrent model sequen-
tially predicts the next action template to append onto
the skeleton. For each skeleton, we use our backtracking
search method (Section IV) to attempt to optimize it.

• Baseline B4: We train a raw GNN policy that maps low-
level states x to actions a. The GNN outputs a discrete
choice of which controller to use, and values for both
the discrete and continuous arguments of that controller.
This baseline does not make use of the samplers.

• Baseline B5: As discussed in Section V-C, we run our
planning algorithm with no operators, which reduces to
trying to optimize every possible plan skeleton. This is
the limiting case of LOFT where the dataset D = ∅.

• Oracle: We use our planner with good, hand-written
operators for each domain. This method represents an
upper bound on the performance we can get from LOFT.

Data Collection. In all domains, we use the same data
collection strategy. First, we generate a set of 20 problems
from the domain that are smaller (with respect to the number
of objects) than the ones used for evaluation. Then, we use an
oracle planner to produce demonstrations of good behavior
in these smaller problems. Finally, we collect “negative” data
(which is important for learning preconditions) by, K times,
sampling a random state x seen in the demonstrations, taking
a random action a from that state, and seeing the resulting
x′ = f(x, a), where f is our low-level simulator. We use
K = 100 for Cover and Blocks, and K = 2500 for Painting.

The number of transitions |D| is 126 for Cover, 152 for
Blocks, and 2819 for Painting. All learning-based methods



Fig. 4: Left three: For each of our domains, the percent of planning problems solved within a timeout, as a function of the amount of data
provided to the approach. Each point is a mean over 5 seeds. Dotted lines indicate non-learning approaches (B5 and Oracle). Planning
timeout was set to 1 second for Cover and 10 seconds for Blocks and Painting. In all domains, LOFT performs extremely well, reaching
better planning performance than other approaches with less data. Right: Predicate ablation experiment, showing problems solved by LOFT
as a function of the number of predicates withheld. Each point is a mean over 25 seeds; for each seed, we randomly select predicates to
remove. LOFT is somewhat robust to a few missing predicates, but generally relies on being given a complete set to perform very well.

(LOFT and Baselines B0-B4) receive the exact same dataset.
Experimental Details. We use pmin = 0.001 and Nsamples =

10 for all domains. We use a planning timeout of 1 second
for Cover and 10 seconds for Blocks and Painting. For all
GNN models, we preprocess literals to be arity 1 or 2 by
either adding a dummy argument (if arity 0) or splitting
into multiple literals (if arity > 2). All GNNs are standard
encode-process-decode architectures [30], where node and
edge modules are fully connected neural networks with one
hidden layer of dimension 16, ReLU activations, and layer
normalization. Message passing is performed for K = 3
iterations. Training uses the Adam optimizer with learning
rate 0.001 and batch size 16. For B1 and B2, we use search
width W = 1 for Cover and Blocks, and W = 3 for Painting;
we use 5 iterations of fitted Q-iteration for Cover, and 15
for Blocks and Painting; and we train for 250 epochs per
iteration. For B3 and B4, we train for 1000 epochs.

B. Results and Discussion

See Figure 4 (left three plots) for our main set of results,
which show planning performance of each method as a
function of the amount of data given. To assess performance
with 50% of data given, for example, we train from scratch
using only 50% of transitions randomly sampled from the
full dataset D. In all three domains, LOFT achieves the
performance of the oracle with enough data. In Painting,
none of the baselines are able to solve even a single planning
problem within 10 seconds. Furthermore, across all domains,
LOFT is more data-efficient than all learning-based baselines
(especially the GNN ones), since it does not require as much
data on average to learn probabilistic operators as it does to
train a neural network.

The difference between LOFT and B0 (LOFT but with
LNDR) is noteworthy: B0 often performs much worse.
Inspecting the operators learned by LNDR, we find that the
learning method is more liable to get stuck in local minima.
For example, in the Painting domain, LNDR consistently
uses one operator with the Holding predicate instead of
two operators, one with HoldingSide and another with
HoldingTop. Our learning method is able to avoid these
pitfalls primarily because the lifted effect clustering is decou-
pled from precondition learning and parameter estimation.
Our method learns effect sets once and does not revisit

them until the operators are determinized during planning;
in contrast, LNDR constantly re-evaluates whether to keep
or discard an effect set in the course of learning operators.

Comparing B1 and B2 shows that model-free approaches
can actually suffer from inclusion of the low-level state as
input to the network, since this inclusion may make the
learning problem more challenging. LOFT, on the other hand,
does not use the low-level states to learn operators; this
may be a limitation in situations where the predicates are
not adequate for learning useful operators. Nevertheless, one
could imagine combining model-free approaches like B1, B2,
and B3 with LOFT: a learned Q-function could serve as a
heuristic in our high-level A∗ search.

B4, the raw GNN policy, performs especially poorly in
all domains since it does not make use of the samplers.
This suggests that direct policy learning without hand-written
samplers is challenging in many TAMP domains of interest.

LOFT outperforms B5 (planning without operators) given
enough data. However, in Blocks, we see that with only a
little data, LOFT actually performs slightly worse than B5,
likely because with little data, the operators that are learned
are quite poor and provide misleading guidance.

Table I reports training times for all methods. We see that
LOFT trains extremely quickly — many orders of magnitude
faster than the GNN baselines, which generally do not
perform nearly as well as LOFT in our domains. This further
confirms that learning symbolic operators is a useful and
practical way of generating guidance for TAMP planners.

Finally, in two additional experiments, we measure the
impact of ablating predicates on the performance of LOFT
(Figure 4, rightmost plot) and test the importance of using
classical heuristics in the high-level A* search (Table II). We
can conclude from Figure 4 that LOFT has some robustness
to missing predicates: even with up to 3 predicates withheld,
LOFT remains the only non-oracle approach that solves any
planning problems in Painting. However, performance dete-
riorates quickly; this is because we are using the operators in
A* search with the hAdd heuristic, which is highly sensitive
to missing preconditions or effects. Table II is an ablation
study that shows the importance of using hAdd: our results
are significantly worse if we instead use a blind heuristic,
that is, a heuristic which is 0 everywhere. This speaks to the
benefits of the fact that LOFT learns PDDL-style operators.



Training Times (seconds)
Domain LOFT (ours) B0 B1 B2 B3 B4
Cover 0.13 (0.07) 0.47 (0.03) 131 (17) 145 (21) 497 (520) 127 (174)
Blocks 0.12 (0.07) 6.6 (0.42) 490 (48) 554 (72) 371 (122) 106 (146)
Painting 16 (0.91) 328 (21) 23704 (1033) 24326 (490) 5371 (3904) 816 (361)

TABLE I: Each entry shows the mean (standard deviation) training time in seconds over 5 seeds. Both LOFT and B0 train orders of
magnitude faster than B1-B4. LOFT is also one order of magnitude faster than B0. B5 is excluded because it is not learning-based.

Heuristic Ablation Results
Domain LOFT w/ hAdd LOFT w/ blind
Cover 100 (0) 100 (0)
Blocks 94 (5) 42 (12)
Painting 100 (0) 0 (0)

TABLE II: An ablation of the hAdd heuristic used in our method,
where we replace it with a blind heuristic (always 0) that does not
leverage the PDDL structure of the operators. Each entry shows
the mean (standard deviation) percent of planning problems solved
over 5 seeds. These results suggest that classical planning heuristics
like hAdd are especially critical in our harder domains.

VII. CONCLUSION

We addressed the problem of learning operators for TAMP
in hybrid robotic planning problems. The operators guide
high-level symbolic search, making planning efficient. Ex-
periments on long-horizon planning problems demonstrated
the strength of our method compared to several baselines, in-
cluding graph neural network-based model-free approaches.

A key future research direction is to relax the assumption
that predicates are given. While assuming given predicates
is standard in learning for TAMP, this is a severe limitation,
since the quality of these predicates determines the quality of
the abstraction. It would be useful to study what characterizes
a good predicate, toward designing a predicate learning
algorithm. Another useful future direction would be to learn
the hybrid controllers that we are currently given, perhaps
by pretraining with a reinforcement learning algorithm.
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