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Abstract— In robotic domains, learning and planning are
complicated by continuous state spaces, continuous action
spaces, and long task horizons. In this work, we address these
challenges with Neuro-Symbolic Relational Transition Models
(NSRTs), a novel class of models that are data-efficient to
learn, compatible with powerful robotic planning methods,
and generalizable over objects. NSRTs have both symbolic
and neural components, enabling a bilevel planning scheme
where symbolic AI planning in an outer loop guides continuous
planning with neural models in an inner loop. Experiments in
four robotic planning domains show that NSRTs can be learned
very data-efficiently, and then used for fast planning in new
tasks that require up to 60 actions and involve many more
objects than were seen during training.

I. INTRODUCTION

For robots to plan effectively, they will need to contend
with continuous state spaces, continuous action spaces, and
long task horizons (Figure 1, bottom row). Symbolic AI
planning techniques are able to solve tasks with very long
horizons, but typically assume discrete, factored spaces [3].
Neural network-based approaches have shown promise in
continuous spaces, but scaling to long horizons remains
challenging [4]. How can we combine symbolic and neural
planning methods to overcome the limitations of each?

In this paper, we propose a new model-based approach for
learning and planning in deterministic, goal-based, multi-task
settings with continuous state and action spaces. Following
previous work, we assume that a small number of discrete
predicates (named relations over objects) are given, having
been implemented by a human engineer [5], [6], or learned
from previous experience in similar domains. These predi-
cates induce discrete state abstractions of the continuous en-
vironment state. For example, HOLDING(block1) abstracts
away the continuous pose with which block1 is held. Even
when given predicates, the question of how to make use of
them to learn effective models for planning in continuous
state and action spaces is a hard problem we seek to address.

From the predicates, and from training data of transitions
in an environment, we aim to learn: (1) abstract actions,
which define transitions between abstract states; (2) an
abstract transition model, with symbolic preconditions and
effects akin to AI planning operators; (3) a neural transition
model over the low-level, continuous state and action spaces;
and (4) a set of neural action samplers, which define how
abstract actions can be refined into continuous actions.
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We unify all of these with a new class of models that
we term the Neuro-Symbolic Relational Transition Model
(NSRT) (pronounced “insert”). NSRTs have both symbolic
and neural components; all components are relational, per-
mitting generalization to tasks with any number of objects
and allowing sample-efficient learning.

To plan with NSRTs, we borrow techniques from search-
then-sample task and motion planning (TAMP) [7], with
symbolic AI planning in an outer loop serving as guidance
for continuous planning with neural models in an inner loop.
This bilevel strategy allows for fast planning in continuous
state and action spaces, while avoiding the downward re-
finability assumption, which would assume planning can be
decomposed into separate symbolic and continuous planning
steps [8]. When modeling robotic domains symbolically, the
predicates are often lossy, meaning that downward refinabil-
ity cannot be assumed (Figure 1, top and middle).

This paper focuses on how to learn NSRTs and how to
use NSRTs for planning in continuous-space, long-horizon
tasks. We show in four robotic planning domains, across
both the PyBullet [2] and AI2-THOR [1] simulators, that
NSRTs are extremely data-efficient: they can be learned from
a few thousand transitions. We also show that learned NSRTs
allow for fast planning on new tasks, with many more objects
than during training and long horizons of up to 60 actions.
Baseline and ablation comparisons confirm that integrated
neuro-symbolic reasoning is key to these successes.

II. RELATED WORK

Model-Based Reinforcement Learning (MBRL). Our
work is related to MBRL in that we use data of taking actions
in an environment to learn and plan with transition models.
Many recent approaches to deep MBRL learn transition mod-
els that are relatively unstructured, and therefore must resort
to undirected planning strategies such as CEM [4]. Relational
MBRL is a subfield of MBRL that uses relational learning [9]
to learn object-centric factored transition models [10] or to
discover STRIPS operator models [11], [12] when given a
set of predicates. Our work also learns relational transition
models, but with a bilevel structure that allows planning
without assuming downward refinability.

Symbolic AI Planning for RL. Our work continues a
recent line of investigation that seeks to leverage symbolic
AI planners for continuous states and actions. For example,
previous work learns propositional [13], [14] or lifted [15],



Fig. 1: We propose Neuro-Symbolic Relational Transition Models (NSRTs). (Top row) Given the goal of placing the red block completely
into the blue target region, we first perform AI planning with the symbolic NSRT components to find a one-step symbolic plan. The
Continuous Planning 1 column shows various ways in which the agent attempts to refine this one-step symbolic plan into a ground action,
using the neural components of (ground) NSRT 1; it finds a collision-free refinement, shown in the Final State column. (Middle row)
Here, the green block is initially in a slightly different position, so the red block has no room to be placed into the blue target region.
The initial symbolic plan is the same. However, this symbolic plan is not downward refinable, so Continuous Planning 1 fails. The agent
then continues on to consider a four-step symbolic plan that first moves the green object away (Symbolic Planning 2 column), which is
successfully refined in the Continuous Planning 2 column. This example illustrates that in the presence of complex geometric constraints
which make symbolic abstractions lossy, integrated symbolic and continuous reasoning is necessary. (Bottom row) Screenshots of our
four robotic planning environments. Kitchen uses the AI2-THOR simulator [1]; the others use PyBullet [2].

[16], [17] symbolic transition models, and uses them with
AI planners [18], [3]. Other related work has used symbolic
planners as managers in hierarchical RL, where low-level
option policies are learned [5], [19], [20]. This interface
between symbolic planner and low-level policies assumes
downward refinability, a critical assumption we do not make.

Learning for Hierarchical Planning. Reasoning at mul-
tiple levels of abstraction is a key theme in hierarchical
planning [21]. Task and motion planners (TAMP) [7] can
plan effectively at long horizons, but they typically re-
quire hand-specified operators, action samplers, and low-
level transition models. Our work continues recent research
into learning these components instead [6], [22], [23], [24].
Comparatively, ours is the first to learn operators, samplers,
and a low-level transition model in one unified system.

III. PROBLEM SETTING

We study a deterministic, goal-based, multi-task setting
with continuous object-oriented states, continuous actions,
and a fixed, given set of predicates. Formally, we consider
an environment ⟨T , d,A, f,P⟩ and a collection of tasks, each
of which is a tuple ⟨s0, g,H⟩.

Environments. T is a set of object types, and d : T →
N defines the dimensionality of the real-valued attribute
(feature) vector of each object type. For example, an object
of type box might have an attribute vector describing its
current pose, side length, and color. An environment state
s is a mapping from a set of typed objects o to attribute
vectors of dimension d(o), where d(o) is shorthand for the
dimension of the attribute vector of the type of object o. We
use S to denote this object-oriented state space. TheA ⊆ Rm
is the environment action space. The f : S × A → S ∪ Sfail
is a deterministic transition function mapping a state s ∈ S
and action a ∈ A to either a next state in S or a failure
state in Sfail. A failure state ends a task attempt, and is
characterized by the objects responsible for the failure, e.g.,
objects that are unexpectedly in collision. Throughout this
paper, the transition function f is unknown to the agent.

P is a set of predicates given to the agent. A predicate
is a named, binary-valued relation among some number
of objects. A ground atom applies a predicate to specific
objects, such as ABOVE(o1, o2), where the predicate is
ABOVE. A lifted atom applies a predicate to typed place-
holder variables: ABOVE(?a, ?b). Taken together, the set of



ground atoms that hold in a continuous state define a discrete
state abstraction; let ABSTRACT(s) denote the abstract state
for state s ∈ S, and let S↑ denote the abstract state space. For
instance, a state s where objects o1, o2, and o3 are stacked
may be represented by the abstract state ABSTRACT(s) =
{ON(o1, o2),ON(o2, o3)}. Note that this abstract state loses
details about the geometry of the scene.

Tasks. A task ⟨s0, g,H⟩ is an initial state s0 ∈ S , a goal
g, and a maximum horizon H . We will generally denote the
set of objects in s0 as O. This object set O is fixed within a
task, but changes between tasks. Goals g are sets of ground
atoms over the object set O, such as {ON(o3, o2), ON(o2,
o1)}. A solution to a task is a plan, a sequence of at most
H actions a ∈ A such that successive application of the
unknown transition model f , starting from s0, results in a
final state s where g ⊆ ABSTRACT(s) (i.e., the goal holds).

Data Collection and Evaluation. We focus on the prob-
lems of learning and planning. To isolate these problems, we
assume that a training dataset of tuples D = {(s, a, s′)} is
provided, with s ∈ S, a ∈ A, s′ ∈ S∪Sfail, and f(s, a) = s′.
The agent’s objective is to maximize the number of tasks
solved over a set of test tasks that are selected to have long-
horizon goals and more objects than were seen in D.

IV. NSRT REPRESENTATION

The next three sections introduce Neuro-Symbolic Re-
lational Transition Models (NSRTs). In this section, we
describe the NSRT representation; in Section V, we address
planning with NSRTs; and in Section VI, we discuss learning
NSRTs. Figure 2 illustrates the full pipeline.

We want models that are learnable, plannable, and gen-
eralizable. To that end, we propose the following definition:

Definition 1: A Neuro-Symbolic Relational Transition
Model (NSRT) is a tuple ⟨O,P,E, h, π⟩, where:
• O = (o1, . . . , ok) is an ordered list of parameters; each
oi is a variable of some type from type set T .
• P is a set of symbolic preconditions; each precondition

is a lifted atom over parameters O.
• E = (E+, E−) is a tuple of symbolic effects. E+ are

add effects, and E− are delete effects; both are sets of
lifted atoms over parameters O.
• h : Rd(o1)+···+d(ok) × A → Rd(o1)+···+d(ok) is a low-

level transition model, a neural network that predicts next
attribute values given current ones and an action.
• π(a | v) is an action sampler, a neural network defining
a conditional distribution over actions a ∈ A, where
v ∈ Rd(o1)+···+d(ok) is a vector of attribute values.

In this paper, we will learn and plan with a collection of
NSRTs. Together with the object set O of a task, a collection
of NSRTs jointly defines four things: an abstract action
space for efficient planning; a (partial) abstract transition
model over the abstract state space S↑ and the abstract action
space; a (partial) low-level transition model over environment
states and actions; and action samplers to refine abstract
actions into environment actions. The rest of this section
describes how NSRTs define these four components.

First, we define the notion of grounding an NSRT:

Definition 2: Given an object set O, a ground NSRT is
an NSRT whose parameters oi ∈ O are replaced by objects
from O, following an injective substitution σ mapping each
oi to an object. The ground preconditions and effects under
σ are denoted Pσ and Eσ respectively.

Given a set of NSRTs and a task with object set O, the re-
sulting set of ground NSRTs defines an abstract action space
for that task, which we denote as A↑. Therefore, the phrases
abstract action and ground NSRT are interchangeable. For
instance, say we wrote an NSRT called STACK with two
parameters ?x and ?y; let σ = {?x 7→ o3, ?y 7→ o6}. Then
STACK(o3, o6) is an abstract action with substitution σ.

Working toward a definition of the abstract transition
model, we next define ground NSRT applicability:

Definition 3: A ground NSRT with preconditions Pσ is
applicable in state s ∈ S if Pσ ⊆ ABSTRACT(s). It is also
applicable in abstract state s↑ ∈ S↑ if Pσ ⊆ s↑.

In words, applicability simply checks that the ground
NSRT’s precondition atoms are a subset of the abstract state
atoms. A set of ground NSRTs defines a (partial) abstract
transition model f↑ : S↑×A↑ → S↑, which maps an abstract
state and abstract action (ground NSRT) to a next abstract
state. The f↑(s↑, a↑) is partial since it is only defined when
a↑ is applicable in s↑; when it is applicable, we have:

f↑(s↑, a↑) = (s↑ \ E−
σ ) ∪ E+

σ , (Equation 1)

where Eσ = (E+
σ , E

−
σ ) are the effects for a↑. In words,

this abstract transition model removes delete effects and
includes add effects, as long as the preconditions of the
ground NSRT are satisfied. This symbolic representation is
akin to operators in classical AI planning [25]; we use this
connection to our advantage in Section V.

What is the connection between the symbolic components
of an NSRT (P and E) and the environment transitions? To
answer this question, we use the following definition:

Definition 4: A ground NSRT a↑ with effects (E+
σ , E

−
σ )

covers an environment transition τ = (s, a, s′), denoted
a↑ |= τ , if (1) the ground NSRT is applicable in s; (2)
E+
σ = ABSTRACT(s′) \ ABSTRACT(s); and (3) E−

σ =
ABSTRACT(s) \ ABSTRACT(s′).

We assume that the following weak semantics connect
P and E with the environment: for each ground NSRT
a↑, there exists a state s ∈ S and there exists an action
a ∈ A such that a↑ |= (s, a, f(s, a)). Importantly, this
means that the abstraction defined by the NSRTs does not
satisfy downward refinability [8], which would have required
the “there exists a state” to be “for all states.” These weak
semantics make learning efficient (Section VI), but require
integrated planning (Section V).

To plan, it is important to be able to simulate the effects of
actions on the continuous environment state. We next discuss
the low-level transition model h, which is used for this.

Definition 5: Given a state s and ground NSRT a↑ with
substitution σ, the context of s for a↑ is vσ(s) = s[σ(o1)] ◦
· · · ◦ s[σ(ok)], where vσ(s) ∈ Rd(o1)+···+d(ok), s[·] looks up
an object’s attribute vector in s, and ◦ is vector concatenation.



In words, the context for a ground NSRT is the subset
of a state’s attribute vectors that correspond to the ground
NSRT’s objects, assembled into a vector. The context is the
input to the low-level neural transition model h:

h(vσ(s), a) ≈ vσ(f(s, a)),

where, recall, f is the unknown environment transition
model. All objects not in σ are predicted to be unchanged.

Finally, the neural action sampler π of an NSRT connects
the abstract and environment action spaces: it samples con-
tinuous actions from the environment action space A that
lead to the NSRT’s symbolic effects. Given a state s and
applicable ground NSRT with substitution σ, if a ∼ π(· |
vσ(s)), then (s, a, f(s, a)) should ideally be covered by the
ground NSRT. The fact that π is stochastic can be useful for
planning, where multiple samples may be required to achieve
desired effects (see Figure 1, or [6]).

There are three key properties of NSRTs to take away from
these definitions. (1) NSRTs are fully relational, i.e., invariant
over object identities. This leads to data-efficient learning
and generalization to novel tasks and objects. (2) NSRTs do
not assume downward refinability, as discussed above. (3)
NSRTs are locally scoped; all components of a ground NSRT
are defined only where it is applicable. This modularity leads
to independent learning problems; see Section VI.

V. NEURO-SYMBOLIC PLANNING WITH NSRTS

We now describe how NSRTs can be used to plan in a
given task. Recall that the weak semantics of NSRTs (Section
IV) do not guarantee downward refinability: a sequence of
abstract actions that achieves a goal cannot necessarily be
turned into a sequence of environment actions achieving
that goal. Our strategy will be to perform integrated bilevel
planning, with an outer search in the abstract space informing
an inner loop producing environment actions. This planning
strategy falls under the broad class of search-then-sample
TAMP techniques [7]. See Algorithm 1 for pseudocode.

Symbolic Planning. We perform an outer A∗ search
from ABSTRACT(s0) to g, with the abstract transition model
of Equation 1 and uniform action costs. For the search
heuristic, we use hadd, a domain-independent heuristic from
the symbolic planning literature [25] that approximates the
state-to-goal distance under a delete relaxation of the abstract
model. This A∗ search will find candidate symbolic plans:
sequences of ground NSRTs a↑ ∈ A↑.

Continuous Planning. For each candidate symbolic plan,
an inner loop attempts to refine it into a plan — a sequence
of actions a ∈ A that achieves the goal g — using the neural
components of the NSRTs. We use the action sampler π and
low-level transition model h of each ground NSRT in the
symbolic plan to construct an imagined state-action trajectory
starting from the initial state s0. If the goal g holds in the
final imagined state, we are done. If g does not hold, or if any
state’s abstraction does not equal the expected abstract state
according to the A∗ search, then we repeat this process. After
ntrials (a hyperparameter) unsuccessful imagined trajectories,
we return control to the A∗ search.

Algorithm BILEVEL PLANNING WITH NSRTS
Input: NSRT set {⟨O,P,E, h, π⟩}
Input: Task ⟨s0, g,H⟩
Input: ntrials: # of imagined trajectory tries
// A∗ with symbolic components of NSRTs

and classical heuristics.

s↑0 ← ABSTRACT(s0)

for p ∈ A∗(s↑0, g,H, {⟨O,P,E, ·, ·⟩}) do
for ntrials tries do

Initialize plan as empty list
// Imagine rollout with neural

components of ground NSRTs.

s← s0
for ground NSRT ⟨·, ·, ·, π, h⟩ ∈ p do

a ∼ π(· | s) // stochastic

Append a to plan
s← h(s, a)

if g ⊆ ABSTRACT(s) then
return plan

Algorithm 1: Pseudocode for bilevel planning with
NSRTs. The outer loop runs A∗ search over the symbolic
components of the NSRTs, from the symbolic initial state
s↑0 = ABSTRACT(s0) to the goal g. This A∗ produces
candidate symbolic plans p, which are sequences of
ground NSRTs. The neural components of these ground
NSRTs are used in the inner loop, which tries ntrials times
to refine a symbolic plan into a sequence of continuous
actions from the environment action space A. If the goal
g holds in the final state, we are done. In practice, we
perform an extra optimization (not shown): we terminate
the inner loop early whenever ABSTRACT(s) deviates
from the expected sequence of states under p.

Handling Failures. Recall that some transitions in the
environment can lead to a failure state in Sfail. Following
[26], we would like to use the presence of a failure state
during continuous planning to inform symbolic planning.
We begin by assuming that we have a model which predicts
whether a failure state is reached, and if so, the set of objects
{o1, . . . , oj} that were responsible for the failure (e.g.,
two objects that were in collision, or an object that broke
irreparably); we will show how to learn this model in Section
VI. Now, we perform a domain-independent procedure: we
introduce special predicates NOTCAUSESFAILURE for every
object type in the environment, and for each NSRT, we add a
symbolic effect NOTCAUSESFAILURE(oi) for each oi in the
parameters O. This says that every action affecting a set of
objects absolves all those objects from being responsible for
a failure; we found this simple technique sufficient for our
experiments, but other, more domain-specific information
can be leveraged instead [26]. During refinement, if a
failure is predicted, we terminate the inner loop, update the
preconditions of the ground NSRT at that timestep to include
{NOTCAUSESFAILURE(o1), . . . ,NOTCAUSESFAILURE(oj)}
(where {o1, . . . , oj} are the set of objects predicted to be



Fig. 2: Our pipeline, with a simplified Painting example. An NSRT (Section IV) contains both symbolic components used for A∗ search
with AI planning heuristics, and neural components used for continuous planning. The example NSRTs shown in the middle require that
a robot must be side-grasping an object to place it into a shelf. These NSRTs are not ground: their parameters are variables, so these
NSRTs can be applied to any objects. We learn NSRTs from transition data (Section VI), and then use them to perform bilevel planning
(Section V). Delete effects are omitted from this figure for visual clarity.

responsible for the failure), and restart A∗ from the initial
state. This forces A∗ to either consider actions which change
the states of these objects before using the same ground
NSRT, or just avoid using this ground NSRT entirely.

VI. LEARNING NSRTS

We now address the problem of learning the structure
(Section VI-A), the symbolic components (Section VI-B),
and the neural components (Section VI-C) of NSRTs, all
using the training dataset D (Section III).

A. Partitioning the Transition Data

Recall that D contains a set of samples from the unknown
transition model f : each sample is a state s ∈ S , an action
a ∈ A, and either a next state in s′ ∈ S or a failure state in
Sfail. We will ignore the transitions that led to Sfail; they will
be used in Section VI-D. We begin by partitioning the set of
transitions τ = (s, a, s′) so that each partition ψ ∈ Ψ will
correspond to a single NSRT, thus automatically determining
the number of learned NSRTs. Two transitions belong to the
same partition iff their symbolic effects can be unified:

Definition 6: Two transitions τ1 and τ2 can be unified if
there exists a bijective mapping σ from the objects in EFF(τ1)
to the objects in EFF(τ2) s.t. σ[EFF(τ1)] = EFF(τ2), where
EFF(τ) = (ABSTRACT(s′)\ABSTRACT(s),ABSTRACT(s)\
ABSTRACT(s′)), and σ[·] denotes substitution following σ.

These partitions can be computed in time linear in the
number of transitions, objects, and atoms per effect set.

B. Learning the Symbolic Components

We now show how to learn NSRT parameters O, symbolic
preconditions P , and symbolic effects E for each partition
ψ ∈ Ψ. First, we define a mapping REF that maps a transition
τ to a subset of objects in τ that are “involved” in the
transition. In practice, we implement REF(τ) by selecting

all objects that appear in EFF(τ).1 By construction of our
partitions, every transition τ ∈ ψ will have equivalent
REF(τ), up to object renaming. We thus introduce NSRT
parameters O corresponding to the types of all the objects in
any arbitrarily chosen transition’s REF(τ). For each τ ∈ ψ,
let στ be a bijective mapping from these parameters O to
the objects in REF(τ). The NSRT symbolic effects follow
by construction: E = σ−1

τ [EFF(τ)] for any arbitrary τ ∈ ψ.
To learn the symbolic preconditions P for the NSRT

corresponding to partition ψ, we use a simple inductive
approach that restricts learning by assuming that for each
lifted effect set seen in the data, there is exactly one lifted
precondition set.2 By this assumption, the preconditions
follow from an intersection of projected abstract states:

P =
⋂

τ=(s,·,·)∈ψ

σ−1
τ [PROJECT(ABSTRACT(s))],

where PROJECT maps ABSTRACT(s) to the subset of atoms
whose objects are all in REF(τ). By construction, the seman-
tics we defined in Section IV are satisfied over the training
dataset: each transition belongs to one partition, and the
preconditions for that partition must hold in its abstract state.

C. Learning the Neural Components

We now describe how to learn a low-level transition model
h and action sampler π for each partition’s NSRT. The key
idea is to use the state projections computed during partition-
ing to create regression problems. Recalling Definition 5, let
vσ = s[στ (o1)] ◦ · · · ◦ s[στ (ok)] denote the context of state
s from transition τ , where (o1, o2, . . . , ok) are the NSRT
parameters. In words, vσ is a vector of the attribute values

1This suffices for our experiments, but it cannot capture “indirect effects,”
where some objects influence a transition without themselves changing;
other implementations of REF could be used instead.

2See [24] for a more expensive method that avoids this assumption.



in state s corresponding to the objects that map the ground
atoms EFF(τ) of the transition to the lifted effects E of the
NSRT. We can do the same to produce vσ′ for s′. Applying
this to all transitions in ψ gives us a dataset of (vσ, a, vσ′).

Recall that we want to learn h such that h(vσ(s), a) ≈
vσ(f(s, a)). With the dataset above, this learning problem
now reduces to regression, with vσ and a being the inputs
and vσ′ being the output. We use a fully connected neural
network (FCN) as the regressor, trained to minimize mean-
squared error. Learning π requires distribution regression,
where we fit P (a | vσ) to the transitions (vσ, a, ·). We use
an FCN that takes vσ as input and predicts the mean µ and
covariance matrix Σ of a Gaussian. This FCN is trained
to maximize the likelihood of action a under N (µ,Σ).3

Since Gaussians have limited expressivity, we also learn
an applicability classifier that maps pairs (vσ, a) to 0 or
1, implemented as an FCN with binary cross-entropy loss.
We implement π as a rejection sampler that draws from the
Gaussian until the applicability classifier returns a 1.4

D. Learning to Predict Failures

Here we address the problem of learning to anticipate
failures during planning. Note that unlike NSRT learning
(Section VI), which is “locally scoped” to a fixed number of
objects defined by the NSRT parameters, failure prediction
can require reasoning about all objects in the full state.
Extracting the training data transitions that led to a failure
state in Sfail, we create a dataset of the form {(s, a,Ofail)},
where Ofail is the set of objects in the failure state. We then
train a graph neural network (GNN) that takes as input s,
ABSTRACT(s), and a, and outputs a score between 0 and 1
for each object, representing the predicted probability that it
is included in Ofail. We follow [27] for the graph encoding
and GNN architecture. Once trained, we use the GNN to
predict both whether a transition to a failure state occurs
and Ofail, by checking whether there are any objects whose
score is over 0.5, and including them in Ofail if so.

VII. EXPERIMENTS

Our empirical evaluations address the following key ques-
tions: (Q1) Can NSRTs be learned data-efficiently? (Q2) Can
learned NSRTs be used to plan to long horizons, especially
in tasks involving new and more objects than were seen in
the training dataset? (Q3) Is bilevel planning efficient and
effective, and are both levels needed? (Q4) To what extent
are learned action samplers useful for planning?

A. Experimental Setup

We evaluate Q1-Q4 by running seven methods on four
environments. All experiments were run on Ubuntu 18.04
using 4 CPU cores of an Intel Xeon Platinum 8260 processor.

Environments. In this section, we describe our four
environments. The environments are illustrated in Figure 1

3Here, we are assuming that the desired action distribution has nonzero
measure. In practice, Σ can be arbitrarily small.

4If the applicability classifier fails enough times (10 in experiments), we
terminate the inner loop and continue the outer A∗ search (see Alg. 1).

(bottom row). Each environment has two sets of tasks: “easy”
test and “hard” test. “Hard” test tasks require generalization
to more objects. In all environments, we transition to a failure
state in Sfail whenever a geometric collision occurs.
• Environment 1: In “PickPlace1D,” a robot must pick

blocks and place them into designated target regions on a
table. All poses are 1D. Some placements are obstructed
by movable objects; none of the predicates capture ob-
structions, causing a lack of downward refinability.
• Environment 2: In “Kitchen,” a robot waiter in 3D must
pick cups, fill them with water, wine, or coffee, and serve
them to customers. Some cups are too heavy to be lifted;
the cup masses are not represented by the predicates,
causing a lack of downward refinability.
• Environment 3: In “Blocks,” a robot in 3D must stack
blocks on a table to make towers. In this environment
only, the downward refinability assumption holds.
• Environment 4: In “Painting,” a robot in 3D must pick,

wash, dry, paint, and place widgets into a box or shelf.
Placing into the box (resp. shelf) requires picking with
a top (resp. side) grasp. All widgets must be painted a
particular color before being placed, which first requires
washing/drying if the widget starts off dirty or wet. The
box has a lid that may obstruct placements; whether
the lid will obstruct a placement is not represented
symbolically, causing a lack of downward refinability.

Dataset Creation. We create the training dataset D for
each environment by, 700 times, sampling an initial state
s0 and running a scripted stochastic policy π0 from it. This
policy avoids the zero-measure issues that would arise from
uniformly random actions, but it is not goal-directed, and it
does not nearly suffice to solve test tasks. For PickPlace1D,
Kitchen, and Blocks, we experiment with up to 7000 transi-
tions; for Painting, up to 12000 since it is more challenging.

Methods Evaluated. We evaluate the following methods.
Note that B4-B6 receive information that Ours and B1-B3
do not have access to: the scripted stochastic policy π0
mentioned above. All methods get the same training dataset.
• Ours: Bilevel planning with NSRTs. This is our main
approach. Plans are executed open-loop.
• B1: Symbolic planning only. This baseline performs
symbolic planning using the symbolic components of
the learned NSRTs. When a symbolic plan is found that
reaches the goal, it is immediately executed by calling
the learned action samplers for the corresponding ground
NSRTs in sequence, open-loop. The low-level transition
models are not used. This baseline ablates away our
integrated planner and assumes downward refinability.
• B2: Neural planning only with forward shooting.

This baseline randomly samples H-length sequences of
ground NSRTs and uses their neural components to
imagine a trajectory, repeating until it finds a trajectory
where the final state satisfies the goal. This baseline does
not use the symbolic components of the NSRTs, and thus
can be seen as an ablation of the symbolic planning.
• B3: Neural planning only with hill climbing. This
baseline performs local search over full plans. At each



Fig. 3: Learning curves showing the percentage of 100 randomly generated test tasks (top row: easy tasks; bottom row: hard tasks) solved
versus the number of transitions in the dataset. Each curve depicts a mean over 8 seeds, with standard deviation shaded. All methods have
a timeout of 3 seconds per task. NSRTs (green) quickly learn to solve many more tasks than the baselines, especially in the hard tasks.

iteration, a random plan step is resampled using the
learned action sampler of a random NSRT. The new
plan is rejected unless it improves the number of goal
atoms satisfied in the final imagined state. As in B2, the
symbolic components of the NSRTs are not used.
• B4: GNN action-value function learning. This “model-

free” baseline trains a goal-conditioned graph neural
network (GNN) action-value function using fitted Q-
iteration. The GNN takes as input a continuous low-level
state, the corresponding abstract state, and a continuous
action; it outputs a value. At evaluation time, given a
state, we draw candidate actions from π0 (see above).
• B5: No learned samplers. This baseline is an ablation

of our main approach that does not use the learned NSRT
action samplers π. Instead, actions are drawn from π0.
• B6: No symbolic components or learned samplers. This
baseline is an ablation that uses the forward shooting of
B2 but with actions drawn from π0, like B5. Only the
low-level transition models h are used.

Additional details. All neural networks are fully con-
nected with two hidden layers of size 32, and trained using
the Adam optimizer for 35K (action samplers), 10K (low-
level transition models), or 50K (applicability classifier)
epochs with a learning rate of 1e-3. In our robotic environ-
ments of interest, transitions are often sparse, changing only
a subset of object attributes at any given time. For learning
the low-level transition model, we exploit this by calculating
the attributes that change in any transition within a partition,
and only predict next values for those attributes. For learning
the action samplers, we restrict the covariance matrix Σ to
be diagonal and positive semi-definite using an exponential
linear unit [28]. During evaluation, we clip samples from
the action samplers to be at most 1 standard deviation from

the mean, for improved stability. The applicability classifier
is trained with negative examples collected from either data
in other partitions, or data in the same partition but with
the objects re-mapped. We subsample negative examples to
ensure that the dataset is balanced in a 1:1 ratio with the
positive examples. In all experiments, we use ntrials = 1,
which we found to be sufficient due to the accuracy of
the action samplers and low-level transition models. For the
action-value function (B4), we train by running 5 iterations
of fitted Q-iteration, and during evaluation, we sample 100
candidate actions from the scripted policy π0 at each step,
choosing the action with the best predicted value to execute
in the environment. Methods that use shooting (B2 and B6)
try up to 1000 iterations, or until the timeout (3 seconds for
every method across all experiments) is reached.

B. Results and Discussion

See Figure 3 for learning curves. The main observation
is that in all environments, our method quickly learns to
solve tasks within the allotted 3-second timeout. Thus, Q1
and Q2 can be answered affirmatively. Turning to Q3, we
can study whether bilevel planning is effective by comparing
Ours, B1, and B2. The gap between Ours and B1 shows the
importance of integrated bilevel planning. B1 will not be
effective in any environment where downward refinability
does not hold; only Blocks is downward refinable, which
explains the identical performance of Ours and B1 there. B2
fails in most cases, confirming the usefulness of the symbolic
components of the learned NSRTs.

Both B3 and B4 are generally ineffective. B3 performs
local search, which is much weaker than our directed A∗.
B4 is model-free, forgoing planning in favor of learning a
value function; such strategies are known to be more data-
hungry [4]. In our experimentation, we found that for the



PickPlace1D Kitchen Blocks Painting
Methods Easy Hard Easy Hard Easy Hard Easy Hard
Bilevel planning with NSRTs (Ours) 98.4 85.0 99.1 90.4 95.0 79.6 99.6 89.6
No learned samplers (B5) 95.9 46.4 71.9 32.6 89.9 53.4 84.5 0.1
No symbolic components or learned samplers (B6) 71.1 0.0 0.0 1.5 62.9 8.6 5.4 0.0

TABLE I: Percentage of 100 randomly generated test tasks solved after learning on the full training dataset. Each number is a mean
over 8 seeds; bold results are within one standard deviation of best. Both the symbolic components and the learned samplers are critical.

Easy test tasks, B4 starts performing decently after seeing
about four times as much data as we used in making the
plots, confirming that it requires substantially more data.

To evaluate Q4, we turn to an ablation study. Table I
compares our method with B5 and B6, both of which sample
actions from the scripted policy π0 rather than using our
learned NSRT action samplers. First, comparing B5 and
B6, bilevel planning is much better than shooting, which
speaks to the benefits of using the symbolic components
of the NSRTs to guide planning; this conclusion was also
supported by Figure 3. Second, comparing Ours and B5, the
learned action samplers help substantially. This is because
π0 is highly generic, not targeted toward any specific set of
effects like our NSRT action samplers are.

VIII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We proposed NSRTs for long-horizon, goal-based, object-
oriented planning tasks, showed that their neuro-symbolic
structure affords fast bilevel planning, and found that they
are data-efficient to learn and effective at generalization,
outperforming several baselines. Key limitations of this work
include the assumption that predicates are given and the
assumption that environments are deterministic and fully ob-
servable. To address the former, NSRTs could be combined
with work on learning predicates from high-dimensional
inputs [16]. For the latter, we hope to draw on TAMP
techniques for stochastic and partially observed settings.
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